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Abstract

One particular kind of evolutionary algorithms known as Estimation of Distribution

Algorithms (EDAs) has gained the attention of the aerospace industry for its ability to

solve nonlinear and complicated problems, particularly in the optimization of space trajec-

tories during on-orbit operations of satellites. This article describes an effective method

for optimizing the trajectory of a spacecraft using an evolutionary approach based on

EDAs, incorporated with fitness landscape analysis (FLA). The approach utilizes flexi-

ble operators that are paired with seeding and selection mechanisms of EDAs. Initially,

the orbit transfer problem is mathematically modeled and the objectives and constraints

are identified. The landscape feature of the search space is analyzed via the dispersion

metric to measure the modality and ruggedness of the search domain. The obtained

information are used as feedback in developing adaptive operators for truncation factor

and constraints separation threshold of the employed EDA. A framework for spacecraft

trajectory optimization has been presented where the dispersion value for a space mission

is estimated using a k -nearest neighbors (k -NN) algorithm. The suggested method is used

to solve several problems related to low-thrust orbit transfer of satellites in Earth’s orbit.

Results demonstrate that the suggested framework for trajectory design and optimization

of space transfers is effective enough to offer fuel-efficient and energy-efficient maneuvers

for different thrust levels of the propulsion system. Moreover, the performance of the

proposed approach is evaluated against non-adaptive EDA and other advanced evolu-

tionary algorithms. The obtained results certify that the proposed adaptive evolutionary

approach is superior in identifying feasible minimum-fuel and minimum-energy transfer

trajectories.
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Adaptive Operators

1. Introduction

Algorithm development for guidance and control of space vehicles is one of the binding

technologies for design and analysis of space missions. The optimization of low-thrust,

multi-revolution orbit transfer trajectories is often regarded as a difficult problem in mod-

ern space engineering. Over the past decades, considerable efforts have been dedicated

to the design of high-performance methodologies and algorithms for spacecraft trajectory

optimization. Works by Prussing [1], Marec [2], and Edelbaum [3] are the first attempts

in this field, following by noticeable advances in trajectory optimization. There are two

techniques that are typically used, namely the direct method and the indirect method.

[4]. The direct schemes discretize the state and control variables and convert the opti-

mal control problem into a nonlinear programming (NLP) problem [5, 6]. The indirect

strategies on the other hand, are based on the calculus of variations and Pontryagin’s

maximum principle, which generate a two-point-boundary-value problem [7, 8]. In recent

years, Evolutionary Algorithms (EAs) and Machine Learning (ML) techniques have been

merged with both of these methods in a good deal of research to enhance the performance

of the approach in finding optimal transfer trajectories for space systems [9].

1.1. Evolutionary Algorithms in Spacecraft Trajectory Optimization

Significant progress has been observed in recent endeavors related to the utilization

and development of EAs for optimizing spacecraft trajectories. In this regard, Samsam

and Chhabra [10] solved trajectory generation of on-orbit servicing mission through a

constrained multi-objective optimization algorithm based on non-dominated sorting Ge-

netic Algorithm (NSGA-II). In this research, a scheme based on the generation of Pareto

optimal trajectories is developed for long-range rendezvous. Caruso et al. [11] presented

an indirect methodology for trajectory approximation of low-thrust orbital maneuvers.

In this research, a shape-based method combined with Genetic Algorithm (GA) is pre-

sented for Earth to asteroid transfer trajectory design and optimization. In their work,

Pallone et al. [12] presented a new swarm intelligence algorithm, in which an indirect

technique evolved from heuristic algorithms is implemented to multi-stage launch vehicle

trajectory optimization. Deep feed-forward neural networks (NN) methodology is devel-

oped by Li et al. in [13] for solving perturbed orbit transfer problems, where Particle
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Swarm Optimization (PSO) merged with an indirect technique is used in multi-target

mission design. Also, Xie and Dempster [14] presented an ML technique to find opti-

mal finite thrust interplanetary transfer. They applied an optimization strategy based

on NN to low-thrust interplanetary trajectory optimization. In another research, Zhou

et al. [15] introduced an evolutionary method in on-orbit servicing, where GA merged

in one-level and two-level optimization models is used in scheduling problem of multiple

geosynchronous satellites refueling mission.

1.2. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are a type of EAs that have demon-

strated encouraging results when it comes to addressing difficult optimization problems in

astrodynamics [16]. EDAs have been integrated into several methods to solve trajectory

optimization problems of space vehicles, and they have been shown to have promising

performance [17, 18]. This group of EAs has demonstrated their ability to effectively

solve highly challenging problems in astrodynamics and remain competitive in doing so.

However, in the field of spacecraft trajectory optimization, little attention was paid to

EDAs, in contrast to GA and PSO [4]. The most enhanced version of EDAs is EDA++,

which has been recently developed by the author for constrained continuous optimiza-

tion problems [19]. EDA++ is equipped with several heuristic mechanisms to deal with

the satisfaction of nonlinear constraints, and it outperforms its rival EAs in terms of

efficiency and execution time. Yet, still it treats the optimization problem as a black

box with no adaptations. Since the main framework is based on probabilistic models

and estimation, it has a flexible structure and therefore has a potential environment for

developing adaptive mechanisms in constrained continuous optimization problems.

1.3. Motivation of Research

Following the aforementioned efforts in discovering unknown variables for achieving

the optimal transfer trajectory, it can be realized that researchers typically either develop

a new EA or select an arbitrary one to obtain the desired solution. However, little re-

search has been conducted to investigate why a specific EA outperforms other competing

algorithms in spacecraft trajectory optimization problem. Also, in case of choosing an

arbitrary EA, the effectiveness of the selected algorithm, or its parameters in finding the

optimal solution has not given proper attention in the literature. In particular, no clear
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connection can be found between the selection of the EA, or rather the choice of the

EA parameters, and the complexity of the spacecraft trajectory optimization problem.

In such research, usually EAs in their best setup suited for a specific problem is imple-

mented, and the reported results are associated with the best obtained solution out of

multiple runs of the algorithm. It is unclear how the performance of the employed EA

setup will be if some of the mission parameters (e.g., the desired final semi-major axis

in a non-coplanar low-thrust orbit transfer) are changed. The question has remained

unanswered whether the employed EAs, or the newly developed EAs are robust enough

to deal with any mission parameters without the need for adjusting their parameters

prior to optimization runs. The current article is primarily motivated by the knowledge

and understanding gained from these insights. The primary focus of this research is to

investigate the level of difficulty associated with orbit transfer problems, and to create

an adaptive EA that benefits from these findings for adjusting the algorithm parameters.

This concept is referred to as Fitness Landscape Analysis (FLA) [20], and it is linked to

the development of intelligent algorithms for complex systems and the process of auto-

tuning [21]. However, adequate attention has not been devoted to this concept in the field

of astrodynamic. FLA includes various techniques that are used to measure the difficulty

of the optimization problems by means of some metrics for calculating the complexity of

the search domain. The work of Choi and Park [22] may be the sole effort in using FLA

metrics to examine the complexity of spacecraft trajectory optimization problems. The

authors conducted a good research on exploring the complexity of some well-known prob-

lems from Global Trajectory Optimization Problems (GTOPs) database [23] via different

FLA metrics. However, there has been a scarcity of studies aimed at developing EAs

that utilize insights obtained from FLA techniques for optimizing spacecraft trajectories.

In this regard, the aim of this research is to utilize FLA techniques to develop new and

robust approaches for spacecraft trajectory optimization based on EDAs.

1.4. Main Contribution

The approach in this study is an advanced version of the technique that involves con-

verting the system input into parameters directly. The resulting optimization problem is

solved through an effective evolutionary approach, specifically designed for non-coplanar

orbit transfers. In this regard, a new technique is suggested for the optimization of low-

thrust trajectories of spacecraft in Earth’s orbit. The proposed approach is adaptive in
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nature. After identifying the complexity of optimizing spacecraft trajectory for low-thrust

orbital maneuvers using FLA techniques, novel adaptive operators for EDA++ are pro-

posed. The developed adaptive operators use the insights gained from FLA techniques

to enhance the algorithm’s exploration and exploitation abilities while seeking the best

possible feasible transfer trajectories. The justification for targeting the mechanisms of

EDA++ in developing novel adaptive operators in this research lies upon the fact that

this algorithm has already outperformed the majority of modern constrained continuous

optimization algorithms [19], and since it works based on the framework of EDAs, it

contains many parameters and components associated with probabilistic models to con-

trol its exploration and exploitation capabilities, which provides high level of flexibility

for adaptation. To evaluate the effectiveness of the suggested approach, it is applied to

solve multiple low-thrust orbit transfer problems. The method’s superiority is demon-

strated by comparing the solutions obtained through it to those obtained by several other

state-of-the-art algorithms.

1.5. Research Outline

The remainder of this paper is structured as follows. Initially, the problem of find-

ing low-thrust orbit transfer trajectories are mathematically modeled in Section 2. The

dynamical equations, describing the motion of the spacecraft, are provided and the associ-

ated optimal control problem is turned into an optimization problem via parameterization

of unknown functions using Chebyshev approximation. The objective function and the

constraints are defined and consequently in Section 3, the overall workflow of EDA++ is

introduced along with key algorithm parameter, which have been aimed for adaptation

in this research. To measure the difficulty of the orbit transfer problem, several variables

are introduced as problem identifiers. An FLA method is proposed, which utilizes a dis-

persion metric to compute the complexity of the search domain. Following the obtained

feedback from the landscape feature analysis, the suggested approach introduces two

adaptive operators that control the exploration and exploitation abilities of the search

process. These operators are used for the truncation factor and constraints separation

threshold, and are intended to aid the algorithm in finding optimal feasible solutions. To

reduce the computational complexity, a k -nearest neighbors (k -NN) algorithm is used to

estimate the dispersion value for a given problem. Consequently, based on the proposed

mechanisms, an Adaptive Estimation of Distribution Algorithms (AEDA) is presented
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to find fuel-optimal and energy optimal transfer trajectories. Detailed simulation case

studies of the optimization architecture are proposed in Section 4 for several orbit trans-

fer scenarios. The suggested method’s effectiveness is evaluated by comparing it to other

constrained evolutionary algorithms like ARMOR-DE [24] and DC3 [25], as well as the

non-adaptive EDA++. Finally, Section 5 contains the conclusions of the research.

2. Problem Formulation

The low-thrust orbit transfer problem is aimed in this research, where a space vehicle

is expected to travel from the initial orbit to the desired orbit using low-thrust propulsion.

A schematic representation of the problem is illustrated in Fig. 1.

Initial orbit 

Desired orbit

Transfer trajectory 

Space vehicle 

Arrival at the final orbit 

Initial mass 

Specific impulse 

Thrust level 

Error of final elements 

Final mass 

Thrust direction 

Thrust switching 
[E(tf )]

[m(tf )]

[aI  eI  iI  ΩI  ωI ]

[aD  eD  iD  ΩD  ωD]

[mI ]

[Isp]

[Tmax]

[νi(t), θi(t)]
[ti
0, ti

f ]

t = t0

t = tf

Figure 1: Representation of known variables (blue), unknown variables (red), objectives and constraints

(green) in low-thrust trajectory optimization

The figure shows the known and unknown variables along with constraints and objec-

tives with their corresponding symbols, which are going to be discussed in this section.

The initial and final orbits are considered to be non-coplanar, which imposes more com-

plexity to the problem in comparison to coplanar transfers. A feasible transfer trajectory

is the one associated with reaching the final orbit with minimum errors of the orbital

elements. Among all feasible trajectories, the optimal trajectory is the one associated

with the least fuel or energy consumption for the spacecraft. The first step of solving any

spacecraft trajectory optimization problem is to mathematically model the spacecraft

dynamics along with problem inputs and constraints. Finding optimal space trajectories
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in this research is an optimal control problem, which will be converted into an optimiza-

tion problem via a direct method. The optimal control problem for spacecraft low-thrust

trajectory optimization can be presented as follows

min
u∈U
J

s.t.

ẋ = F (x,u,Q, t)

G(xf ,Q) ≤ 0

t ∈ [t0, tf ]

(1)

where J is the objective value as a function of state vector x : [t0, tf ] → Rnx , control

variables u ∈ L∞(U ⊆ Rnu), and static parameters Q ∈ Q ⊆ RnQ . The functions x(t)

belong to the Sobolev spaceW1,∞, while the objective function is J : Rnx×Rnu×RnQ →
R. The objective is subject to a set of dynamic constraints with F : Rnx ×Rnu ×RnQ ×
[t0, tf ] → Rnx , and boundary conditions G : Rnx × RnQ → RnG . One can say that the

solution of the problem is a subset of U that satisfies the constraints. In the following

subsections, the related equations for objectives, constraints, and other parameters shown

in Fig. 1 are discussed to represent the conversion of optimal control problem as in Eq.

1 into a constrained continuous optimization problem.

2.1. Spacecraft Dynamics

Low-thrust orbital maneuvers are considered with two performance indices, including

the energy-optimal and fuel-optimal indices. The propulsive thrust and the force due to

Earth’s gravitation are assumed to be the only affecting forces. The transfer follows the

following set of dynamical equations [2, 4]

ṙ = v

v̇ = − µ
r3
r +

Tmaxu

m
ψ

ṁ = −Tmaxu

Ispg0

(2)

where the spacecraft state is determined by its position vector r = (rx, ry, rz), velocity

vector v = (vx, vy, vz), and mass m. Here, µ denotes the Earth’s gravitational constant,
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Tmax represents the maximum thrust magnitude, u ∈ [0, 1] is the engine thrust ratio that

controls on-off switches, and ψ is the unit vector of thrust direction. The specific impulse

of the thruster and average gravitational acceleration of Earth are respectively denoted

as Isp and g0. These equations represent the function F in Eq. 1 with x = [r;v;m] and

u = uψ. The initial orbit and the desired orbit are known, and can be defined by five

orbital elements as shown in Fig. 1. These elements define the shape and orientation of

a space orbit, which include semi-major axis (a), eccentricity (e), inclination (i), right

ascension of ascending node; RAAN; (Ω), and argument of perigee (ω). Having these

elements along with true anomaly (or the epoch time), the vectors for the position and

the velocity of the spacecraft on the orbit can be obtained. Therefore, the initial values

of the state variables of Eq. 2 (xi) becomes known and it is possible to integrate the

dynamical equations. Then, the terminal values (xf ) can be evaluated and compared with

the desired orbital elements to check the feasibility of the transfer trajectory. Overall,

the known parameters for a unique low-thrust trajectory optimization problem as shown

in Fig. 1 can be represented by the vector Q in Eq. 1 as

Q = [aI eI iI ΩI ωI aD eD iD ΩD ωD mI Tmax Isp] (3)

Having the orbital elements for the initial and desired orbits as [aI eI iI ΩI ωI ] and

[aD eD iD ΩD ωD] respectively, along with initial mass of the spacecraft mI , specific

impulse Isp, and maximum available thrust level Tmax, a unique problem is established

regarding the optimization of a non-coplanar orbital maneuver. The problem is to find

the optimal on-off time intervals of thrust-arcs along with their associated thrust profile

that establish a transfer trajectory with minimum-energy or minimum-fuel consumption

subject to the satisfaction of initial condition and terminal constraints.

2.2. Direct Transcription

Discovering the optimal transfer trajectory for the aimed problem is subject to finding

unknown profiles of thrust arcs along with their on-off timings during the transfer. These

unknown functions and variables can be represented in X , namely

X =
[
tI1 T1 t

F
1 tI2 T2 t

F
2 ... tIi Ti t

F
i ... tINT−1 TNT−1 t

F
NT−1 tINT

TNT
tFNT

]
(4)
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where NT is the number of thrust arcs, tIi and tFi (1 ≤ i ≤ NT ) are the starting time and

ending time of thrust arcs respectively, which construct the switching function u in Eq.

2 as

u = u(tIi , t
F
i ) i ∈ {1, 2, ..., NT} (5)

In Eq. 4, Ti are thrust profiles as functions of time in each respective time interval

of tIi < t < tFi . This representation agrees with minimum-energy and minimum-fuel

transfers, since the thrust magnitude is at maximum value within the thrust arcs as

|Ti| = Tmax for tIi < t < tFi , and is equal to zero within the coast arcs as |Ti| = 0 for

tFi < t < tIi+1. This definition agrees with

u = uT (6)

where T is a function of Ti for i ∈ {1, 2, ..., NT} . The components of thrust vector within

the thrust arcs can be defined as

Ti(t) = Tmaxψ = Tmax


cos θi(t) cos νi(t)

cos θi(t) sin νi(t)

sin θi(t)

 (7)

with θi and νi as the steering angles of the space vehicle with respect to the reference

frame that forms ψ in Eq. 2. As can be appreciated with the current definition, the

optimal time history of steering angles are unknown and yet to be determined besides

the on-off time intervals. Considering the upper and lower bounds for steering angles as

−π/2 < θi(t) < +π/2,−π < νi(t) < +π, for each unique thrust arc, the variations are

defined as approximated time-profiles via finite number of nodes for the steering angles

as

[θ(t), ν(t)] = C (θ̂1, θ̂2, ..., θ̂Np , ν̂1, ν̂2, ..., ν̂Np) (8)

with C (·) as the approximation operator, which converts the given discrete nodes θ̂j, ν̂j

into continuous time-series. With respect to the fact that −π/2 < θ̂j < π/2,−π < ν̂j <

+π, (j = 1, ..., Np), different schemes may be employed for this operator. In this research,

Chebyshev polynomials are utilized in C (·) to parameterize the time-histories of steering

angles.
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2.3. Chebyshev-based input parameterization

The basic idea behind the use of a Chebyshev approximation method for solving

the optimal control problem is to find global polynomial approximations for the control

functions in terms of their values at the points. Recalling the Weierstrass approximation

theorem [26], let ψ be a representative of θ or ν as real-valued function defined on a

compact interval [tIi , t
F
i ] of R. Then, for any ζ > 0, there exists a polynomial P(t) such

that

|ψ(t)− P(t)| ≤ ζ (9)

for all t ∈ [tIi , t
F
i ]. Having ψ : [tIi , t

F
i ] → R, and t1 < ... < tNp ∈ [tIi , t

F
i ] be given, there

exists a unique polynomial of degree at most Np − 1 that interpolates ψ at t1, ..., tNp in

the sense that

P(tj) = ψ(tj) (10)

for j = 1, ..., Np, where P is the interpolating polynomial of ψ at t1, ..., tNp . The interpo-

lating polynomial P can be expressed explicitly in Lagrange form by

P(t) =
Np∑
j=1

f(tj)Cj(t) (11)

where the following equation stands for Cj(t)

Cj(t) =
Np∏

k=1,k ̸=j

t− tk
tj − tk

(12)

If P and C are two polynomials of degree at most Np−1 that interpolate ψ at t1, ..., tNp ,

then w = P − C, is a polynomial of degree at most Np − 1 that vanishes at Np points

t1, ..., tNp . It follows that w is identically zero, which implies P = C. The interpolation

error can be identified by calculating the remainder term. Considering ψ to be an Np

times continuously differentiable function on a compact interval [tIi , t
F
i ] and P is the

Np − 1 degree polynomial that interpolates ψ at t1, ..., tm ∈ [tIi , t
F
i ], the remainder term

can be defined as

R(t) = ψ(t)− P(t) = ψ(Np)(ξ)

Np!
(t− t1)...(t− tNp) (13)

10



for some ξ ∈ [tIi , t
F
i ]. It follows that

|ψ(t)− P(t)| ≤ ϕ(t)

Np!
max

y∈[tIi ,tFi ]
|ψ(Np)(y)| (14)

where ϕ(t) = (t − t1)...(t − tNp) is the monic polynomial of degree Np with roots at

t1, ..., tNp . Following this interpolation scheme, the points

tk = cos
(2k − 1

Np

π

2

)
(15)

for k = 1, ..., Np are Chebyshev nodes of the first kind. They are roots of the degree Np

Chebyshev polynomial defined by

TNp(t) = cos(Np arccos t) (16)

for t ∈ [tIi , t
F
i ]. The Chebyshev polynomials satisfy the recursion formula T0(x) = 1,

T1(t) = t,

Tk+1(t) = 2tTk(t)− Tk−1(t) (17)

for k ≥ 1, and thus the leading coefficient of Tk is 2k−1. Moreover, observe that

|TNp(t)| = | cos(Np arccos(t))| ≤ 1 (18)

for t ∈ [−1, 1]. Thus, if t1, ..., tNp are Chebyshev nodes (of the first kind), then

|(t− t1)...(t− tNp)| = |
1

2Np−1
TNp(t)| ≤

1

2Np−1
(19)

for t ∈ [−1, 1]. If we define the map l : [−1, 1]← [tIi , t
F
i ] by

l(t) =
tFi − tIi

2
t+

tFi + tIi
2

(20)

then it follows that

|(t− l(t1))...(t− l(tNp))| ≤
1

2Np−1

(tFi − tIi
2

)Np

(21)

for t ∈ [tIi , t
F
i ]. Combining Eq. 14 and Eq. 21 gives the following observations. Suppose

that ψ is an Np times continuously differentiable function on the compact interval [tIi , t
F
i ],

and let P be the (Np − 1)-degree polynomial that interpolates ψ at the points

tk =
(tFi − tIi

2

)
cos

(2k − 1

Np

π

2

)
+
tFi + tIi

2
(22)

for k = 1, ..., Np. Then,
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|ψ(t)− P(t)| ≤ 2CNp

Np!
(
tFi − tIi

4
)Np (23)

for t ∈ [tIi , t
F
i ] where CNp = maxy∈[tIi ,tFi ] |f (Np)(y)|. Following the presented parameteriza-

tion approach, the vector of decision variables can be reformed by transformation of Eq.

4. For an arbitrary value of Np to parameterize the steering angles, the total number of

decision variables is 2NT (1 + Np). It is possible to have an estimation for the required

number of thrust arcs NT in minimum-fuel and minimum-energy transfers for a given

space mission along with an initial guess for the time intervals of thrust arcs (tIi t
F
i ).

One option is to take advantage of transfer trajectories obtained via impulsive maneu-

vers. There are numerous techniques available in the literature to obtain a solution for

multi-impulse orbit transfers [27]. Such a solution contains a vector of impulse timings

as t̃ = [t̂1 ... t̂NT
]. Utilizing the impulse timings vector, the on-off timings are reformed

as tIi = t̂i − τIi and tFi = t̂i + τFi , with τ
I
i and τFi being the time offsets with respect to

the impulsive timing t̂i in ith thrust arc. Following the new sets of variables, the decision

vector, containing the variables which need to be optimized, is reformed to

X =
[
(τIi τFi ) , (θ̂i,1 ν̂i,1 , ... , θ̂i,Np ν̂i,Np)

]
i∈{1,...,NT }

(24)

where θ̂i,j and ν̂i,j are the jth approximation nodes of ith thrust arc for θ(t) and ν(t)

respectively. It is noteworthy that thrust arc timing offsets are bounded by the orbital

period of coasting orbits in the solution of multi-impulse orbit transfer. Also, the choice

of the number of nodes is nontrivial. However, it is possible to select a reasonable value

for Np based on the shape of thrust profiles obtained by different methods available in the

literature. In this research, the choice of Np = 5 has shown to be a proper selection for

the number of interpolation points in each thrust arc. Merging the boundaries of timing

offsets with the limits of steering angles as mentioned, the upper and lower bounds for

the decision variables can be represented as Xmin ≤ X ≤ Xmax, with Xmin and Xmax as

the lower and upper bounds respectively.

2.4. Objective and Constraints

To achieve optimal orbit transfers, the cost function is defined as follows

J = λ
Tmax

Ispg0

∫ tf

t0

[u− ϵu(1− u)]dt (25)
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where λ is a normalization constant, and ϵ is the homotopy coefficient. This form of cost

function is a transition representation between fuel-optimal and energy-optimal problems,

which has been introduced by Bertrand and Epenoy [28], and is used in many low-thrust

trajectory optimization problems [29]. When ϵ = 1, the problem is an energy-optimal

problem. With ϵ gradually decreasing from 1 to 0, the problem will turn into a fuel-

optimal problem. It is clear that for fuel-optimal transfers, J /λ represents the amount

of fuel mass consumed by the spacecraft during the transfer (mI−m(tf )) with respect to

the dynamical equation of motion in Eq. 2. The normalization constant is calculated as

λ = 1/timp with timp being the total transfer time based on multi-impulsive orbit transfer

for a given space mission. Successful orbital maneuver is subject to reach the desired

orbit with an acceptable error margin. Hence, the orbital error vector is defined as

E(t) =
[
(
a(t)− aD

σa
)2 (

e(t)− eD
σe

)2 (
i(t)− iD

σi
)2 (

Ω(t)− ΩD
σΩ

)2 (
ω(t)− ωD

σω
)2
]
− 1 (26)

where σ(·) denote the maximum allowable differences between the final value and the

desired value for each orbital element. This representation of constraint violation, better

known as the global criterion method, has been vastly used in optimization of space

trajectories [4]. Having the error vector as a function of time and the final time tf , the

constraint function can be defined as

G =


E(tf ), if E(tf ) ≤ 0

KE
E(tf )
E0

+
1

E0tf

∫ tf

0

E(t)dt, otherwise
(27)

where E0 is the error at the initial time. Note that both E0 and tf are known for a unique

solution. By this definition, the constraint function properly distinguishes the feasible

and infeasible transfer trajectories with corresponding penalties. Clearly according to

Eq. 26, E(tf ) ≤ 0 means that the orbital element by the end of transfer is within the

acceptable error margin. So, the transfer is feasible and the constraint function returns a

negative value, proportional to the difference from the desired orbital elements. However,

if E(tf ) > 0, the final conditions are not satisfied and the constraint violation is considered

to be the summation of the scaled error by the end of transfer and the scaled integral

of the error. Obviously, two terms of second condition in Eq. 27 have the following
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boundaries

0 <
E(tf )
E0
≤ 1 (28)

0 <
1

E0tf

∫ tf

0

E(t)dt ≤ 1 (29)

Considering Eq. 27 with boundaries of Eq. 28 and Eq. 29, it can be observed that

for transfers with same final error, the one with less integral of errors are preferred. The

reason is that adaptive operators rely on the amount of constraint violation to find feasible

regions in the search domain. Trajectories that are infeasible and have high constraint

violation tend to disrupt the heuristic search process. Conversely, trajectories that are

infeasible but have a lower integral of errors for orbital elements help adaptive operators

to better identify feasible regions. Also, the final error has the coefficient KE , which

increases the weight of final error. Since tuning this coefficient is not the purpose of this

research, this coefficient has been set to KE = 10 in this research to adjust the priority

of final error. Note that both E(tf ) and G are 1 × 5 vectors. The developed algorithm

is aimed to finding a vector of decision variables in the form of Eq. 24 for minimization

of the objective function described by Eq. 25, while satisfying the presented nonlinear

constraints G ≤ 0 by Eq. 27.

3. AEDA optimization approach

To solve the formed problem, two new adaptive operators for EDA++ is developed

and utilized. Before going through the details of the adaptive operators, it is necessary

to introduce the overall structure of EDA++ further. Recalling the initial description

about EDAs and EDA++ from Section I, EDA++ is an advanced evolutionary optimiza-

tion algorithm, which has been recently developed for solving optimization problems with

nonlinear constraints in continuous domain [19]. The compact pseudo code of this algo-

rithm is illustrated in Alg. 1. This modern EDA is equipped with feasibility conserving

mechanisms, aiming at rapid discovery of high quality feasible solutions in constrained

continuous optimization problems, yet still treats the problem as a black-box with no

adaptations. In this subsection, the overall workflow of the original EDA++ is briefly

described. However, details of the mechanisms and the optimization process are beyond

the scope of this article. Hence, the reader is recommended to refer to [19] for discussions
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Algorithm 1: Simplified pseudo code of the non-adaptive constrained EDA [19]

Input: Objective function, Constraints function, Boundaries
Settings: Algorithm parameters

1 Invoke SEEDING mechanism // Generating initial population
2 Perform EVALUATION // Evaluating the objective values
3 while stopping criteria are not met do
4 Invoke SELECTION mechanism // Selecting high quality solutions
5 Invoke LEARNING mechanism // Building probabilistic models
6 Invoke SAMPLING mechanism // Sampling new solutions
7 Invoke REPAIRING mechanism // Repairing out-of-bound solutions
8 Invoke MAPPING mechanism // Mapping infeasible solutions to

feasible region
9 Perform EVALUATION // Evaluating the objective values

10 Invoke REPLACEMENT mechanism // Forming new population
11 Perform EXTRACTION // Extracting best solution and updating

parameters

Output: Best solution

about the development, performance evaluation, and the details of the original algorithm

workflow prior to proceeding further.

EDA++ consists of several mechanisms based on probabilistic models, which are

executed during the optimization process. The optimization process starts with the use

of the SEEDING mechanism (Line 1 of Alg. 1) to create an initial feasible population.

Subsequently, the optimization loop begins with the availability of initial feasible solutions

and their respective objective values acquired from the EVALUATION step (Line 2 of Alg.

1). In each iteration, the truncation SELECTION method is employed by the algorithm

to pick the most promising individuals from the present population (Line 4 of Alg. 1).

After selecting a population and determining their objective values, a probability model is

developed through a LEARNING mechanism (Line 5 of Alg. 1). This mechanism involves

dividing the selected population into clusters based on their constraint violation. A set

of models is created using a mixture of components, with each component corresponding

to a specific cluster. This is done in order to increase the probability of selecting feasible

solutions. After creating the mixture of models, the SAMPLING method is used to

generate new solutions (Line 6 of Alg. 1). The REPAIRING method then fine-tunes these

newly generated solutions based on the boundary vectors (Line 7 of Alg. 1). Thus far, the

solutions that have been generated are more likely to fall within the feasible region due

to the use of the mechanisms, which are designed to generate feasible solutions. Despite

this, the algorithm still has a tendency to occasionally produce infeasible solutions. As

a result, the MAPPING mechanism (Line 8 of Alg. 1) is utilized to ensure feasibility,
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whereby all possible infeasible solutions are transformed and brought within the feasible

region, resulting in the creation of a population that is entirely feasible. Following the

EVALUATION process of the obtained solutions (Line 9 of Alg. 1), the new individuals

are merged with the previous population, and the REPLACEMENT mechanism (Line

10 of Alg. 1) is employed to create a new population and corresponding objective values

for the current iteration. Each aforementioned mechanism has several parameters, which

control the behavior of the algorithm. Changing these parameters acts as balancing

between exploration and exploitation capabilities of the algorithm while surfing the search

domain. In this research, two of these parameters are aimed to be adapted by the features

of the low-thrust orbit transfer problem.

3.1. Tuning Parameters for Efficient Search

One of the key algorithm parameters is the truncation factor. Represented by γ,

this parameter belongs to the selection mechanism. Alg. 2 shows the implementation of

selection mechanism via this parameter.

Algorithm 2: Pseudo code of the selection mechanism

Input: Population Xi, Truncation factor γ
1 Ji ← Extract the objective values of the population

2 S↑
i ← Sort Xi based on the objective values Ji

3 for j ← 1 to Npop do
4 if j < γNpop then
5 Sseli (j)← S↑

i (j)

6 else
7 BREAK;

Output: Sseli

With the boundary of 0 < γ < 1, it controls the size of the selected population Sseli

out of the current population Xi for creating the probabilistic model as

Sseli =

{
S↑
i,j|j ∈ {1, ..., γNpop}

}
(30)

where S↑
i,j is the jth individual of the sorted population S↑

i in the ith iteration of opti-

mization according to the quality of the corresponding objective values Ji, and Npop is

the size of the current population. Increasing the value for this parameter comes with

more exploration of the search domain, but reduces the convergence rate.
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Algorithm 3: Pseudo code of the seeding mechanism

Input: Constraints function G, Constraints separation threshold κ
1 while maximum seeding iteration is not reached do
2 if first iteration then
3 Ni ←Sample random population via uniform distribution
4 else if seeding regenration is switched then
5 N sel

i ← Select top Npopκ solutions from the current population
6 U ← Sample Npop(1− κ) solutions via uniform distribution
7 Ni ← Merge N sel

i and U
8 else
9 Build mixture of probabilistic model from promising solutions

10 Ni ← Sample new solutions using the mixture model

11 Update seeding regeneration
12 Ji ← Calculate constraint violation G(Ni)
13 if all Ji are feasible then
14 BREAK;

Output: Ni

Another parameter is constraints separation threshold, which is associated with the

seeding mechanism. It is represented by κ as in Alg. 3, acting as a threshold for separation

of individuals based on their constraint violation within the seeding loop. Having N sel
i

as the selected population, the seeding mechanism forms a new population as

Ni =
{
{N sel

i,j ,Uk}|j ∈ {1, ..., κNpop}, k ∈ {1, ..., (1− κ)Npop}
}

(31)

where Uk is the sampled population based on the uniform distribution in the ith iteration

of the seeding loop. Considering the boundaries of 0 < κ < 1, with high values of this

parameter, the algorithm tends to dedicate more process in exploring feasible solutions

in exchange for reducing the priority for local search in objective function minimization.

The two aforementioned elements have been selected as the target parameters for

adaptiveness. The main reason for targeting these parameters is that they are among the

most crucial algorithm parameters which significantly affect the search process during

the optimization. The interaction between the seeding and selection mechanisms makes

these two parameters have determining trace in altering the exploration and exploitation

capabilities of the algorithm.

3.2. Mission Characteristics

Due to the high complexity of the proposed orbit transfer problem, algorithm param-

eter selection is nontrivial. The two aforementioned parameters γ and κ are chosen to

be adapted based on the features of the space mission for a given mission parameters
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Q in Eq. 3. For each unique problem, there are thirteen parameters in Q. However, it

is more convenient to analyze the structure of the search domain with fewer parameters

by considering the differences of the initial and desired orbital elements instead of their

explicit absolute values. Moreover, the thrust to weight ratio has been taken into consid-

eration instead of thrust and mass individually. Following this approach, five parameters

referred to as problem identifiers are defined as follows

Ws = log
(
1 +

(
aD(1− e2D)− aI(1− e2I)

)2)
(32)

Wi = sin(|iD − iI
2
|) (33)

Wo = cos(
ΩD − ΩI

4
) + cos(

ωD − ωI
4

) (34)

Wa =
Tmax

m0

(35)

Wp = Isp (36)

where the orbital angles in Wi and Wo are in radians. As can be appreciated, the five

parameters represent different aspects of the space mission. Ws represents the desired

change in the shape of the space orbit, Wi and Wo represent the desired orientation of the

space orbit, Wa represents the accessible acceleration for accomplishing the space mission,

and Wp is the propellant characteristic. As can be observed, defining proper problem

identifiers mainly depends on the significance of the chosen parameters and their physical

meaning. In space orbit transfer missions, differences between parameters with the same

units (such as initial and final semi-major axis) are important for meeting specific mission

requirements, such as altering the shape of the orbit when transferring from one space

orbit to another. The practicality of the chosen problem identifiers will be implicitly

verified through experiments, which will show that combining adaptive operators based

on the data acquired via these problem identifiers results in high-quality feasible solutions.

On the other hand, using ineffective or improper problem identifiers does not enhance

the performance of the adaptive approach over its non-adaptive version. Based on the

presented mathematical model of the problem, space missions with high values for Ws

and Wi and low values for Wo, Wa generally produce optimization problems with high

dimensions. Wp controls the sensitivity of the system dynamics, since it affects the rate

of mass decrease due to fuel consumption. The variation of dimensions due to changes
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in problem identifiers are nonlinear. Besides the problem identifiers, an augmented cost

function is defined for evaluating the quality of given solutions as

H(J ,G) =


J
mI

, if max(G) ≤ 0∑
G, otherwise

(37)

where J and G are functions for objective and constraints, as in Eq. 25 and Eq. 27

respectively. Clearly, the range of the augmented cost function is 0 < H ≤ 1 for fea-

sible trajectories and 1 < H for infeasible trajectories. It should be clarified that the

augmented cost function defined here is only used for landscape feature analysis, not the

optimization. The optimization algorithm has its own internal mechanisms to deal with

objectives and constraints [19].

3.3. Fitness Landscape Analysis

In order to develop proper adaptive operators, the complexity of the problem needs

to be identified. The goal is to discover the effects of problem identifiers, proposed in Eq.

32 to Eq. 36, on the augmented cost function defined in Eq. 37, and try to match them

with algorithm parameters γ in Eq. 30 and κ in Eq. 31 accordingly. The most common

approach for achieving this goal is using FLA techniques for extracting the characteristics

of the problem [20]. FLA methods propose various metrics for quantifying the problem

characteristics [30, 31]. One of the most practical metrics for FLA is the dispersion,

which gives useful information about the structure of the search domain. This metric,

first introduced by Lunacek and Whitley [32], measures the average distance between

pairs of individuals that are nominated as high quality solutions. A highly dispersed

fitness landscape indicates that there are many possible search regions with different

fitness values, while a low-dispersion landscape suggests that most search space regions

have similar fitness values. Fitness landscape analysis often involves quantifying the

dispersion of fitness values within a population, and exploring how this dispersion changes

over time as evolution proceeds. This information can provide insights into the potential

for evolutionary adaptation and the likelihood of populations becoming trapped in local

optima. Dispersion has been originally introduced for continuous optimization problems,

and has been used to study the search landscape of several problems [33, 34]. Dispersion

extracts the level to which high quality solutions are concentrated in a given problem as
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D =
1

δnD(δnD − 1)

δnD−1∑
i=1

δnD∑
j=i+1

||Xi −Xj|| (38)

where D is the dispersion value, δ is the top percentage of the chosen high quality samples

with respect to the augmented cost function H, and nD is the total number of selected

population. Scaling the distances makes dispersion have a boundary of 0 < D < 1.

Having the computational complexity ofO(δnD2), evolvability and deception of the search

space in low-thrust orbit transfer problems can be identified with this metric. When

samples approach the search space with most promising solutions (i.e., decrease in δ),

the increase of the dispersion implies a weak global structure, which comes with a higher

difficulty for solving the problem, hence more exploration is required. On the other hand,

if lowering the threshold of promising solution results in low dispersion, more exploitation

is needed for reaching the global optimal solution.

Following the proposed metric and problem identifiers, the landscape of the prob-

lem is analyzed in a data set of space missions. To generate a grid-like data set of

space missions, first, 1000 different space missions are considered, which have been

uniformly generated with respect to 6600 km < aI , aD < 42164 km, 0 < eI , eD <

0.8 (subject to perigee altitude more than 200 km), 0 < iI , iD < π, 0 < ΩI ,ΩD < 2π, 0 <

ωI , ωD < 2π, 10−3 N < Tmax < 10 N, 300 kg < mI < 2000 kg, 1500 s < Isp < 5000 s.

Then, following the generated data for each mission parameter vector Q corresponding

to every unique mission, additional mission sets are also generated and added to the data

set by changing each of the mission parameter of Eq. 32 to Eq. 36 with 30 random val-

ues, while keeping the rest of the parameters fixed. Considering various thresholds, the

dispersion is computed for each problem via 100 solutions uniformly distributed within

the limits of Xmin and Xmax for each problem with respect to the augmented cost function

H defined in Eq. 37. To evaluate the robustness of the feature, 50 different samples are

taken for each problem and the dispersion is extracted with different thresholds within

the range of 0.05 ≤ δ ≤ 0.2.

The bound-normalized dispersion for orbital shape identifier Ws is depicted in Fig. 2

along with its maximum and minimum values. According to the normalized dispersion for

orbital shape, a relatively large decrease from the region with maximum value of 0.88372

to the region with minimum value of 0.37328 in dispersion can be observed as the problem

identifier Ws increases. This decreasing behavior implies that high quality solutions are
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Ws Wp(    )Wa (    )(    )

Figure 2: Normalized dispersion for orbital shape

increasingly closer together in orbit transfers with high changes in semi-major axis and

eccentricity. It agrees with the fact that more revolutions, hence more thrust arcs and

on-off thrust profiles, need to be discovered for orbit transfers when the desired change

in orbital parameters becomes high. The bound-normalized dispersion values for orbital

orientation identifier Wi has similar variations. Therefore, same insight can be inferred

for this identifier as well. More changes in the orbital inclination (∆i) requires more

thrust arcs and revolutions for a fixed thrust level.

Unlike the first two identifiers, the dispersion has an increasing variation for Wo and

Wa, which indicates that the solution domain is more chaotic for large changes in Ω and

ω, and when thrust to mass ratio is low for a given orbit transfer problem. This increasing

behavior for Wa is shown in Fig. 3, which illustrates overall dispersion increment from

the region with minimum dispersion of 0.14499 associated with low values of Wa to the

Ws Wp(    )Wa (    )(    )

Figure 3: Normalized dispersion for accessible acceleration
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region with maximum dispersion of 0.51701 associated with high values of Wa.

As can be observed, the dispersion changes agree with the fact that more available

acceleration comes with higher dispersion, and less number of required thrust arcs, which

makes the optimization problem have lower decision variables and complexity. Dispersion

change for Wo has similar behavior. Large changes in Ω and ω correspond to lower

dispersion value for Wo, as less thrust arcs are required for orbit transfers with low

changes in Ω and ω, which corresponds to less complicated optimization problem with

fewer decision variables. Between the proposed problem identifiers, Wp representing the

specific impulse (Isp), has shown to have the least effect on the dispersion value. The

normalized dispersion for this identifier is shown in Fig. 4.

Ws Wp(    )Wa (    )(    )

Figure 4: Normalized dispersion for propellant characteristic

Analysis of dispersion for Wp shows a very small range of changes of 0.39799 ≤ D ≤
0.48663, which is significantly lower than the dispersion range associated with other

problem identifiers. It implies that fewer changes of features are captured by dispersion

metric regarding this problem identifier.

Analysis of dispersion evolution with respect to the changes of threshold shows no-

ticeable variability of dispersion between selected samples for all problem identifiers. It

indicates high discriminative ability of dispersion when orbital changes and thrust to

mass ratio are not too high. Also, it can be observed that when threshold goes from

low to high, the dispersion has less evolution for high values of identifiers, indicating an

insignificant change in the landscape structure captured by dispersion for large changes in

orbital elements and high thrust to mass ratios. Overall, analysis of the proposed metrics

confirms relative reliability of dispersion in describing the complexity of the presented
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finite-thrust trajectory optimization problem.

3.4. Adaptive EDA Operators

Given a space mission parameter vector Q, the proposed landscape metric can be

obtained via Eq. 38. The evolution of the dispersion value is monitored with decreasing

δ within the boundary of 0.05 < δ < 0.2. The dispersion evolution ∆D with respect to

minimum and maximum threshold is used as an indicator to classify the orbit transfer

complexity. A negative value of ∆D implies that the best fitness values are localized in a

small sub-region of the search space, which implies that more exploitation of the search

domain is required to extract promising solutions. A ∆D value around 0 corresponds

to the fact that the best fitness values are spread over the entire search space. Also,

higher values of ∆D show localized promising solutions in distinct remote funnels, hence

algorithms with more exploration capabilities are more preferred.

Following the dispersion evolution for a given problem, the adaptive operator for the

truncation factor is defined as

γ = Kγ(
1 + ∆D

2
)2 + Cγ (39)

where Kγ and Cγ are the progressive truncation coefficients, which are updated within

the optimization process as

Kγ =

√
2

2
+

log(0.1 + ρ)

6
√
3

(40)

Cγ =

√
5

6
cos(

ρπ

2
) (41)

with ρ being the percentage of computational budget that has been used as the optimiza-

tion goes on, representing the progress of the optimization process. The variation of the

proposed truncation factor as the function of dispersion evolution is depicted in Fig. 5.

As can be observed, the truncation factor is adapted based on the dispersion evolution

of the orbit transfer problem, which varies according to the complication of the search

space. If the search domain for the trajectory optimization problem of the desired orbit

transfer has high dispersion evolution, high values will be assigned to γ. This makes

an increase in the population size within the selection mechanism, leading to increase

exploration capability of the algorithm. On the other hand, γ is decreased for low dis-

persion evolution, leading the probabilistic model to be built based on small number of

high quality solutions, i.e., more exploitation within the search process.
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D

Figure 5: Adaptive truncation factor

Following the proposed operator, the adaptive truncation does not have a symmetric

variation for ∆D ≥ 0 and ∆D ≤ 0. The coefficients defined in Eq. 40 and Eq. 41 show

that higher dedication of individuals to the selected population is more prone to dispersion

evolution. The main reason for such a consideration lies upon the natural behavior of

the employed optimization framework, in which sharp variation of truncation factor for

high dispersion evolution is more preferred for finding high quality solutions. Also, the

truncation factor changes gradually toward dedicating less individuals to the selected

populations as the optimization goes on (increase in ρ). This decrease in the truncation

factor is more effective for ∆D < 0 than ∆D > 0 according to Fig. 5. This consideration

is due to the fact that decreasing the truncation factor as the optimization goes on is

relatively more desired when the need for high exploitation is critical. Statistically, the

proposed variations have shown to be effective in finding optimal transfer trajectories

while maintaining feasibility.

Besides the truncation factor, the adaptive operator for adjusting constraints separa-

tion threshold is defined as

κ = Kκ sin(
π(1 + ∆D)

4
)Pκ + Cκ (42)

withKκ, Pκ and Cκ being the coefficients for the threshold. The coefficients are calculated

as

Kκ = 1−
√
ρ

2
(43)

Pκ = 1 + 9ρ (44)
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Cκ = 0.4ρ5 (45)

which indicates the nonlinear dependency of κ on the optimization progress. The variation

of the presented adaptive operator is illustrated in Fig. 6.

D

Figure 6: Adaptive constraints separation threshold

This representation shows overall gradual increase in the constraints separation thresh-

old as the search space requires more exploration, i.e., high values of ∆D. The evolution
of the separation threshold during the optimization process (from blue line to purple line

in Fig. 6) illustrates the threshold variation for a variety of problem complexities. As

can be observed, the separation threshold does not have much variation by the end of the

optimization process when high exploitation is needed (neighborhood of ρ = 1,∆D < 0).

However, the increasing variation of threshold is noticeable at the beginning of optimiza-

tion process regardless of the problem complexity (ρ = 0). This nonlinear variation has

shown to be inline with more feasibility maintenance of the search process.

3.5. Estimation of Dispersion Evolution

Based on the proposed adaptive operators for truncation factor and constraints sep-

aration threshold, the algorithm is dynamically adapted if the dispersion evolution of a

given problem is known. Recalling that the direct calculation of dispersion comes with

the computational complexity of O(ζnψ2), it is crucial to overcome the computational

burden due to the fact that high computational burden can make the algorithm run slower

or even make it infeasible to run on a particular system. In the other word, reducing

computational burden is often a critical aspect of optimizing algorithms and improv-

ing performance. It is an important goal in developing an algorithm, as it can improve
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Average scores

kN ϵ = 0 ϵ = 1

4 0.81295 0.84186

5 0.82054 0.76209

6 0.81923 0.81015

7 0.82880 0.87014

8 0.81825 0.78482

9 0.81623 0.75851

10 0.82007 0.73570

Table 1: Average scores of 8-fold CV for k -NN classifier

the efficiency, scalability, and accessibility of programs, while also making better use of

computing resources. Following this insight, a k -NN with 8-fold cross validation (CV)

is employed to estimate the dispersion evolution. Having the database of pre-calculated

dispersion evolution for fitness landscape analysis in section 3.3, a k -NN classifier is im-

plemented with problem identifiers Ws, Wi, Wo, Wa, and Wp as the features, and the

dispersion evolution ∆D as the output variable to be predicted. The size of the training

data is considered as 80% and the remaining 20% of the data is used for testing. Eu-

clidean distance is utilized, and the following score function is used for classification in

every fold of test data-set.
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Figure 7: Estimation scores in k -NN classifier for fuel-optimal transfers
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Si = 1− |∆Di −∆D̂i|
max(|∆Di −∆D̄|) i ∈ {1, ..., Nt} (46)

where Nt is the size of test data-set, ∆Di is the real dispersion evolution of the ith data,

∆D̂i is the estimated dispersion evolution of the ith data, and ∆D̄ is a vector of all

dispersion evolutions of the training data-set. As can be appreciated, the defined score

is 1 for perfectly estimated dispersion evolution, while the score of 0 corresponds to the

worst prediction, which is associated with the maximum distance between the current

test point from the training data-set. Having the score for each predicted value, the

overall score for the test data-set is simply obtained via

Ŝ =
1

Nt

Nt∑
i=1

Si (47)

which is the average of scores for all data within the test data-set. This score is calculated

for each fold of CV, and consequently the average of all scores associated with every fold

will be the final score for a given number of neighbors kN as

S̄ =
1

NCV

NCV∑
j=1

Ŝj (48)

where NCV is the total number of folds in CV. Fig. 7 shows the average score for 8-fold

CV regarding different numbers of kN in fuel-optimal problems. The tuning of k -NN is

also done for energy-optimal problems as well. Details of the average scores for several

values of kN is provided in Table 1. As can be observed, the choice of kN = 7 corresponds

to the best prediction of dispersion evolution for both minimum fuel (ϵ = 0) and minimum

energy (ϵ = 1) problems.

4. Numerical Results

The proposed framework is implemented using the presented approach to solve fuel-

optimal and energy-optimal trajectory optimization problems. For a given problem of Q,
the problem identifiers (Ws, Wi, Wo, Wa, Wp) are calculated initially. Then, the dispersion

evolution ∆D is estimated via the proposed k -NN classifier. Having the dispersion evolu-

tion as a representative of the problem complexity, EDA++ with the proposed adaptive

operators for the truncation factor γ and the constraints separation threshold κ (i.e.,

AEDA) is used to solve the problem. The selection and the seeding mechanisms are
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adapted with respect to the estimated dispersion evolution and also the progress of the

optimization process. Following the procedure, the exploitation and exploration capa-

bilities of the algorithm are adjusted with respect to the difficulty of the orbit transfer

problem. The remaining parameters of the algorithm have been set according to their

default values, as presented in [19]. Seeding reiteration coefficient is set to 100, which

specifies the number of iterations for restarting the process of the seeding mechanism

inside the algorithm. Smart cluster detection parameter, which acts as the threshold

for separating smart clusters from the parent clusters is set to 0.01. The other key pa-

rameter of the learning mechanism as the outlier detection distance threshold is set to

1, which specifies the distance limit from the centroid of parent clusters for detecting

smart clusters. Also, kernel density has been set to 0.5, which means that the algorithm

samples equal number of populations for parent clusters and smart clusters. Moreover,

the number of mapping steps is considered to be 10 within the mapping mechanism. This

section provides the obtained results for applying the AEDA approach to fuel-optimal

and energy-optimal transfers in two conducted experiments, where various analysis and

comparisons are provided. The effort here is to bring different aspects of the results and

observations to the attention in each experiment, while comparing the performance of

the proposed approach with the non-adaptive version of the algorithm and other rival

methods. It is noteworthy to remind that the two proposed operators are joint together

within the optimization process of EDA. Adaptive truncation factor is associated with

the selection mechanism, while the adaptive constraints separation threshold is associ-

ated with the seeding mechanism. The seeding mechanism maintains the feasibility of the

initial population, while the selection mechanism adjusts the promising solutions based

on their feasibility. The whole framework works effectively if and only if the two op-

erators work together. With respect to this workflow, the non-adaptive version of the

algorithm (EDA++) is included in the experiment setup to see the main effect of the

whole technique, instead of testing each operator individually.

4.1. Fuel-optimal Transfer

The optimization of transfer trajectories for fuel-optimal (ϵ = 0) low-thrust orbital

maneuvers are taken into consideration in this experiment. The spacecraft is assumed

to have the initial mass of mI = 170kg, and the specific impulse is assumed to be

Isp = 2200s. The orbital elements of the initial orbit and the desired orbit are provided
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in Table 2.

Table 2: Classical orbital elements of initial and desired orbits in fuel-optimal problem

Initial orbit Desired orbit

a 27500 km 34600 km

e 0.65 0.05

i 85◦ 50◦

Ω 155◦ 315◦

ω 25◦ 180◦

The fuel-optimal low-thrust orbital maneuver problem is solved with respect to differ-

ent thrust levels of Tmax ∈ {1.5, 2.5, 3.5, 4.5, 5.5}N . The allowable errors for the final or-

bital elements are considered as σa = 5 km, σe = 10−5, σi = 10−3◦ , σΩ = 10−2◦ , σω = 10−1◦ .

Fig. 8 shows the 3D visualization of space orbits with respect to the best obtained results

for various thrust levels. On-off switches within the thrust arcs are also plotted for each

case.

-

Figure 8: Visualization of transfer trajectories in fuel-optimal low-thrust orbital maneuver: (a) Tmax =

1.5N (b) Tmax = 2.5N (c) Tmax = 3.5N (d) Tmax = 4.5N (e) Tmax = 5.5N

As can be appreciated from the plots, the approach managed to find transfer trajec-
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tories in various number of revolutions, while satisfying the initial and desired orbits. As

the thrust level increases, lower number of thrust arcs are employed to reach the final

orbit. Details are provided in Table 3, where the required number of revolutions along

with the total transfer times are tabulated for each thrust level.

Table 3: Best obtained results for fuel-optimal transfers (ϵ = 0)

Tmax[N ] Rev. tf [m] Ea[km] Ee Ei[deg] EΩ[deg] Eω[deg]

5.5 15 8161.03 2.902e-02 9.106e-07 8.058e-05 7.323e-05 3.716e-03

4.5 18 10256.95 1.278e-01 1.099e-06 4.252e-04 5.811e-04 4.033e-03

3.5 21 11870.93 1.332e-01 1.604e-06 5.890e-04 7.175e-04 5.974e-03

2.5 27 15484.06 9.189e-01 4.435e-06 8.392e-04 2.868e-03 9.363e-02

1.5 41 24207.97 3.008e+00 8.148e-06 8.867e-04 4.333e-03 9.804e-02

According to the results, the shortest transfer time is 8161.03 minutes, associated

with 15 revolutions for Tmax = 5.5N . On the other hand, when the maximum thrust

level is set to Tmax = 1.5N , the desired orbit is reached after 41 revolutions in 24207.97

minutes. Table 3 also provides the error of orbital elements with respect to the final

orbit for each thrust level. The variable E(.) represents the absolute difference between

the desired orbital elements and the actual orbital elements of the final orbit. As can

be seen, the proposed algorithm managed to satisfy the desired conditions based on the

defined allowable errors. Results indicate that for space missions with shorter duration of

the transfer time, the final error is smaller. This shows the fact that for less thrust levels,

the problem becomes more complex with higher difficulty of detecting feasible region in

the search space. Since lower thrust levels comes with optimization problems with higher

decision variables, the difficulty of finding feasible transfer trajectories increases.

Having the best obtained solutions for each thrust level, it is possible to analyze many

time-dependent variables and physical properties of the spacecraft. One comparison is

illustrated in Fig. 9, in which the magnitude of state variables (position and velocity)

are plotted for Tmax = 1.5N and Tmax = 5.5N .

The variations show how the transfer trajectories are formed with respect to the

internal acceleration acted on the spacecraft due to the dedicated thrust level of the

propulsion system. The actual velocity increment (∆v) associated with thrust arcs can be

extracted for each transfer trajectory as well. Fig. 10 shows the impulses for Tmax = 5.5N

30



Figure 9: Magnitude of vectors for radius (blue) and velocity (red) of the spacecraft for fuel-optimal

low-thrust orbital maneuver: Tmax = 1.5N (left), Tmax = 5.5N (right)
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Figure 10: Distribution of effective velocity change (∆v) in 15 revolutions for fuel-optimal low-thrust

orbital maneuver with Tmax = 5.5N

case, while the timings of acting thrust are illustrated in Fig. 11

As can be seen for Tmax = 5.5N , the minimum impulse is ∆v = 0.2465 km/s, which

is acted on the spacecraft in the first revolution (0 < t < 118.677), while the second

thrust arc includes the maximum impulse of ∆v = 0.4137 km/s (333.401 < t < 572.699).

The rest of the impulses due to the acting thrust arcs have small changes except the last

impulse (8049.52 < t < 8161.03), where places the spacecraft in the final orbit with an

impulse of ∆v = 0.2845 km/s.

Following the presented orbit transfer problem, the performance of the proposed ap-

proach is compared with the non-adaptive version of EDA (EDA++) and also other state-

of-the-art algorithms for constrained continuous optimization including ARMOR-DE [24]

and DC3 [25]. The chosen algorithms have proven to be the most competitive in terms
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Figure 11: On-off switching thrust function for fuel-optimal low-thrust orbital maneuver with Tmax =

5.5N

of both the speed at which they execute and the quality of the solutions they provide,

when compared to EDA++. Moreover, unlike the presented algorithm, these algorithms

do not work based on probabilistic models. Considering the fact that the proposed algo-

rithm relies on two notable components of parent clusters and smart clusters, it will be a

promising comparison to validate the effectiveness of the two major components within

the optimization process. For every case of Tmax, each algorithm is implemented and

executed in 30 runs with same computational budget. Table 4 summarizes the achieved

results.

Table 4: Algorithm performance comparison for fuel-optimal transfers (ϵ = 0) in 30 runs

Tmax AEDA EDA++ ARMOR-DE DC3

JG Jmin JG Jmin JG Jmin JG Jmin

5.5 96.67 0.000e+00 90.00 1.170e-08 86.67 1.153e-16 96.67 5.558e-12

4.5 96.67 0.000e+00 76.67 1.766e-06 80.00 3.314e-11 33.33 2.663e-06

3.5 86.67 0.000e+00 56.67 5.852e-06 73.33 7.917e-08 30.00 1.509e-05

2.5 73.33 0.000e+00 56.67 9.328e-04 50.00 9.304e-03 23.33 6.471e-03

1.5 70.00 4.841e-02 23.33 0.000e+00 46.67 4.991e-01 06.67 1.160e-01

Two parameters for the measurement of algorithm performance are calculated. The

first parameter is the feasibility ratio (JG) of each algorithm, which simply shows the

percentage of the total runs in which the algorithm succeeded in finding a feasible transfer

trajectory (satisfying the constraints G ≤ 0 in Eq. 27) disregarding the amount of fuel
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consumption (the objective function value J in Eq. 25). The other parameter is the

relative best percentage (Jmin), which is calculated as

Jmin = min(100× J⃗ − J
∗

J ∗ ) (49)

where J⃗ is the vector of objective values correspond to obtained feasible solutions by the

algorithm, and J ∗ is the best obtained solution between all algorithms. Clearly, the Jmin

of zero indicates that the algorithm managed to find the best possible solution between

the rest of the algorithms, and any non-zero value represents relative difference of the

best obtained solution with respect to the global best solution. In the interests of clarity,

the mean values (J̄ ) and the variances of J⃗ (σ2
J ) are also provided in Table 5.

Table 5: The mean values and the variances of J⃗ for fuel-optimal transfers (ϵ = 0) in 30 runs

Tmax AEDA EDA++ ARMOR-DE DC3

J̄ σ2
J J̄ σ2

J J̄ σ2
J J̄ σ2

J

5.5 3.0269e-02 5.1402e-04 8.5469e-02 4.1639e-03 5.7588e-02 1.8515e-03 9.4246e-02 3.5001e-03

4.5 3.3457e-02 5.1343e-04 9.9312e-02 3.3476e-03 7.9764e-02 2.2510e-03 1.1523e-01 3.9336e-03

3.5 3.7038e-02 5.9883e-04 1.9155e-01 1.2860e-02 1.3760e-01 6.0348e-03 1.6548e-01 9.6135e-03

2.5 3.9981e-02 5.1868e-04 1.9470e-01 9.1872e-03 1.4432e-01 7.8948e-03 1.5984e-01 9.1285e-03

1.5 5.2689e-02 9.1511e-04 1.7078e-01 1.2468e-02 1.8017e-01 7.8536e-03 1.9413e-01 1.5032e-02

According to Table 4, the proposed adaptive approach managed to find feasible so-

lutions in more than 90% of runs for Tmax = 5.5N and Tmax = 4.5N . In this regard,

the non-adaptive EDA and ARMOR-DE have shown to be competitive, yet with less

feasibility ratios. Also, considering Jmin values, it can be verified that the best obtained

solution for all cases belongs to the proposed adaptive approach except for Tmax = 1.5N ,

in which the best obtained solution via the adaptive approach is extremely close to the

one obtained via EDA++ with Jmin in the order of 10−2. The best obtained feasible

solution belongs to EDA++ in this case (Jmin = 0). However, the feasibility ratio of

JG = 23.33% versus JG = 70.00% indicates more reliability of the adaptive approach in

comparison to the non-adaptive method. Overall, it can be observed that the advantage

of using the adaptive approach is justified for various amount of thrust levels.

4.2. Energy-optimal Transfer

The second experiment is dedicated to energy-optimal transfers (ϵ = 1) and the orbital

elements of initial and desired orbits are assumed as in Table 6.
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Table 6: Classical orbital elements of initial and desired orbits in energy-optimal problem

Initial orbit Desired orbit

a 20800 km 36000 km

e 0.3 0.05

i 5◦ 20◦

Ω 245◦ 320◦

ω 240◦ 235◦

-

Figure 12: Visualization of transfer trajectories in energy-optimal low-thrust orbital maneuver: (a)

Tmax = 0.5N (b) Tmax = 1.2N (c) Tmax = 1.9N (d) Tmax = 2.6N

The initial spacecraft mass and the specific impulse are considered asmI = 970kg and

Isp = 4800s respectively. The problem is solved considering four different thrust levels of

Tmax ∈ {0.5, 1.2, 1.9, 2.6}N , and the error margins for this experiment are considered as
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σa = 10 km, σe = 10−6, σi = 10−2◦ , σΩ = 10−3◦ , σω = 10−2◦ . The 3D visualization of best

obtained transfer trajectories are illustrated in Fig. 12.

According to the obtained results, the algorithm achieved optimal transfers in all

cases properly, while satisfying the terminal conditions. The increase of thrust arcs

and revolutions for lower thrust levels can be identified from the visualization of transfer

trajectories. Also, besides the increase in the number of on-off switches, it can be observed

that the duration of thrust arcs are also higher in transfers with lower thrust levels. Details

of the obtained transfer trajectories are tabulated in Table 7.

Table 7: Best obtained results for energy-optimal transfers (ϵ = 1)

Tmax[N ] Rev. tf [m] Ea[km] Ee Ei[deg] EΩ[deg] Eω[deg]

2.6 39 29619.26 7.831e-01 5.175e-08 9.809e-05 5.359e-05 1.113e-04

1.9 48 36703.44 1.798e+00 3.283e-07 9.552e-04 5.743e-05 4.458e-04

1.2 67 51508.83 2.079e+00 6.026e-07 1.071e-03 7.688e-05 4.626e-04

0.5 134 102487.38 8.860e+00 7.531e-07 1.286e-03 7.167e-04 4.653e-03

Based on the achieved transfer trajectories, the shortest transfer time is 29619.26

minutes, associated with 39 revolutions for Tmax = 2.6N . Also, for the thrust level of

Tmax = 0.5N , the desired orbit is reached after 134 revolutions in 102487.38 minutes.

The error of orbital elements with respect to the final orbit for each thrust level are also

provided in Table 7. Similar to the previous experiment, solutions obtained via the pro-

posed algorithm satisfy the desired conditions based on the error margins. Consequently,

higher errors are observed for orbital maneuvers with longer duration of transfer time.

Again, it justifies that the problem is more complex with higher difficulty of detecting

feasible region in the search space when the thrust level is low.

The time-histories of orbital elements can be analyzed to verify the orbit evolution

during the orbital maneuver. Fig. 13 and Fig. 14 show the time histories of five orbital

elements correspond to the best obtained solution of the case Tmax = 0.5N using the

adaptive approach.

As can be appreciated, the obtained transfer trajectory includes a transition point at

t = 28315.5m, where an intermediate orbit is achieved by the algorithm. The orbital

elements at this point are as a = 26433.5 km, e = 0.4080, i = 3.9625◦,Ω = 262.74◦, ω =

245.88◦. The shape of this intermediate orbit is visible in plot (a) of Fig. 12, where

35



2 4 6 8 10
Time (m) #104

2

2.5

3

3.5

Se
m

i-m
aj

or
 A

xi
s 

(k
m

)

#104

0

0.1

0.2

0.3

0.4

0.5

E
cc

en
tr

ic
it
y

Eccentricity
Semi-major Axis

Figure 13: Variation of semi-major axis a(t) and eccentricity e(t) in energy-optimal low-thrust orbital

maneuver for Tmax = 0.5N
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Figure 14: Variation of inclination i(t), RAAN Ω(t), and argument of perigee ω(t) in energy-optimal

low-thrust orbital maneuver for Tmax = 0.5N

the trajectory has an intersection with the initial orbit and another intersection with the

desired orbit. This transition orbit corresponds to the impulsive solution, obtained via

the employed method in [27], which is used for estimating the number of thrust arcs. It

shows that the algorithm properly takes advantage of the multi-impulse transfer solution

for achieving the optimal maneuver. It is noteworthy that the two-impulse solution of

this transfer includes an intermediate orbit with a = 26452.775 km, e = 0.408174, i =

3.9488◦,Ω = 263.0025◦, and ω = 245.7072◦, which is very close to the one found by the

proposed algorithm. Likewise, it implies that the employed multi-impulse approach is a

reasonable choice for estimating the number of thrust arcs NT , reformation of decision

variables (τIi τFi ), and setting the λ scaling factor.

Variation of thrust direction angles is another aspect of the transfer trajectory, which
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gives useful insight regarding the evolution of orbit during the maneuver. Each thrust arc

has unique variations for thrust direction angles, and it is possible to visualize the thrust

vector acted on the spacecraft for each on-off thrust profile. As a result, 3D representation

of thrust vector acting on the spacecraft is illustrated for one of the thrust arcs (revolution

21) in Tmax = 0.5N case in Fig. 15.

-

Figure 15: Direction of acting thrust within the revolution 21 of orbit transfer in energy-optimal low-

thrust orbital maneuver for Tmax = 0.5N

Results show high variation of thrust components in this revolution, due to the pa-

rameterization nodes obtained by the proposed adaptive approach. The corresponding

functions of thrust components are shown in Fig. 16, where the time-histories of direction

angles for revolutions 18 to 22 are plotted. It can be observed how five nodes interpola-

tion successfully parameterized the steering angles in each thrust arc. Although, it was

possible to consider more discrete nodes to the model, achieving a feasible solution con-

firms the reasonable choice for the dedicated number of discrete nodes of steering angles

parameterization.

Similar to the previous experiment, the performance of the proposed algorithm has

been compared with ARMOR-DE and DC3 in an empirical test setup. In this experiment,

each algorithm is implemented in 50 independent runs with the same computational

budget for every case of Tmax. The feasibility ratio and relative best percentage of the

results are provided in Table 8. As can be observed, unlike the previous experiment,

AEDA managed to find feasible solutions in all runs. Also, the best objective values

always belong to AEDA, while the performance of EDA++ has shown to be close to

AEDA when Tmax = 1.9N .

Following the conducted experiment, the efficiency and the effectivity of the algorithms

are also taken into consideration. Results are extracted, and the quality and the execution

time of each run are stored. Two new metrics are used for comparison, including Γ,
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Figure 16: Thrust components during revolutions 18 to 22 of 134 (9556 < t < 12117) in energy-optimal

low-thrust orbital maneuver for Tmax = 0.5N

Table 8: Algorithm performance comparison for energy-optimal transfers (ϵ = 1) in 50 runs

Tmax AEDA EDA++ ARMOR-DE DC3

JG Jmin JG Jmin JG Jmin JG Jmin

2.6 100.00 0.000e+00 20.00 6.334e-05 40.00 8.956e-06 48.00 5.858e-07

1.9 100.00 0.000e+00 94.00 4.451e-05 10.00 2.517e-05 20.00 1.244e-04

1.2 100.00 0.000e+00 34.00 3.678e-05 10.00 2.739e-06 38.00 1.045e-04

0.5 100.00 0.000e+00 4.00 2.334e-04 54.00 4.646e-06 10.00 9.412e-05

representing the efficiency of the algorithm, and α denoting the scaled execution time.

For every obtained solution of X̂ , the Γ metric is defined as

Γ(X̂ ) =

1 + Γc(X̂ ) Γc(X̂ ) > 0

Γf (X̂ ) Γc(X̂ ) = 0
(50)

where Γc and Γf are the scaled values of objective function and constraint violation as

Γf (X̂ ) =
J (X̂ )− Jmin

Jmax − Jmin

(51)

Γc(X̂ ) =
G(X̂ )−max(Gmin, 0)

Gmax −max(Gmin, 0)
(52)

where Jmin and Jmax are the minimum and maximum objective values found by any of

the algorithms. Similarly, Gmin and Gmax are the lowest and highest constraint violation

achieved by any algorithms for each thrust level. The defined parameters scale the objec-

tive score Γf and constraint score Γc in the interval of 0 and 1 for each solution. Having
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these scores, the efficiency score Γ will be a score within the interval of 0 ≤ Γ ≤ 2. In

this regard, all feasible and infeasible solutions will be inside the interval of 0 ≤ Γ ≤ 1

and 1 ≤ Γ ≤ 2 respectively. Obviously, Γ = 0 means that the solution is feasible with

the best objective value found. If 0 < Γ < 1, it shows that the solution is feasible, but it

is not the best solution found in terms of the objective value. If Γ = 1, it indicates that

the solution is feasible (or almost feasible) with the worst objective value in comparison

to other obtained feasible solutions. If 1 < Γ < 2, it shows that the solution is infeasi-

ble with constraint violation less than the worst solution that has been found. Finally,

Γ = 2 indicates that the solution is infeasible, and it has the highest amount of constraint

violation. The scaled execution time α(X̂ ) is also defined as

α(X̂ ) = Tα(X̂ )− Tαmin

Tαmax − Tαmin

(53)

where Tα(X̂ ) represents the execution time in obtaining the solution X̂ , and Tαmin and

Tαmax are the lowest and highest execution times between all algorithms for the corre-

sponding thrust level. Similarly, the execution time of any run is scaled within the range

of 0 < α < 1, with α = 0 representing the fastest run, while α = 1 corresponds to the

longest execution time. Having the Γ and α metrics for the efficiency of the algorithms in

each run, the distribution of scores for these parameters represent the overall performance

of the algorithms. Fig. 17 shows this representation for Tmax = 0.5N case.
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Figure 17: Algorithm efficiency for energy-optimal transfer (ϵ = 1) with Tmax = 0.5N

According to the provided visualization, each point possesses the scaled execution

time α and the scaled score Γ, representing the quality of the obtained solution. The
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points for each algorithm are separated with a unique color, and the plotted polygons

contains all the points for every individual algorithm. The relative position of polygons

indicate the comparative performance of each algorithm. As the polygon is closer to

α = 0 and Γ = 0, the algorithm performs faster and better (in terms of the quality of

the obtained solution) respectively. As a note, the Γ = 1 line separates the feasible and

infeasible solutions.

According to Fig. 17, the non-adaptive EDA++ has very poor performance in terms

of quality, with only 2 feasible solutions out of 50 runs. DC3 has better performance in

terms of quality, yet with relatively longer execution times. ARMOR-DE with the fastest

performance, gives relatively better results than DC3 and EDA++. However, the average

quality of the solutions found by AEDA is generally better than ARMOR-DE. Although

the fastest run belongs to ARMOR-DE in this scenario, the solution with the highest

quality is achieved by AEDA. Comparing the relative position of polygons for EDA++

and AEDA confirms very high improvement of the adaptive strategy AEDA over the

non-adaptive algorithm EDA++, which makes it outperform both rival algorithms with

almost the same execution times as in EDA++. Similar analysis can be performed for

Tmax = 1.2N case, as illustrated in Fig. 18.
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Figure 18: Algorithm efficiency for energy-optimal transfer (ϵ = 1) with Tmax = 1.2N

The distribution of the execution times for AEDA, EDA++, and ARMOR-DE do

not show any noticeable advantages, and the longest execution time belongs to DC3 in

this case. However, the quality of the obtained solutions by EDA++ is already better

than ARMOR-DE and DC3, since the number of obtained feasible solutions are higher.
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As can be seen for ARMOR-DE, except for five very high quality solutions, the rest of

the achieved solutions are infeasible. Positions of the polygons of AEDA and EDA++

indicates that the employment of AEDA has improved the performance of EDA++ even

further, since all runs of AEDA ended up in feasible solutions. The performance of the

algorithms for Tmax = 1.9N is provided in Fig. 19.

0 0.2 0.4 0.6 0.8 1
Scaled Execution Time (,)

0

0.5

1

1.5

2
Q

ua
lit

y 
of

 t
he

 S
ol

ut
io

n 
(!

)
AEDA
EDA++
ARMOR-DE
DC3

Figure 19: Algorithm efficiency for energy-optimal transfer (ϵ = 1) with Tmax = 1.9N

In this case, it can be observed that the majority of the obtained solutions by ARMOR-

DE and DC3 are infeasible, since the large portion of the corresponding polygons are

placed in Γ > 1 region. Similar to the previous case, the EDA++ already has a better

performance relative to ARMOR-DE and DC3 with only 3 infeasible solutions. However,

using the adaptive approach, AEDA gives solutions with higher quality with almost the

same scores for the execution time. Finally, Fig. 20 shows the relative performance of

the algorithms for Tmax = 2.6N .

In this case, ARMOR-DE has shown to have the least execution times, while DC3

generally takes longer time for finding the optimal solutions. In terms of the quality of

the solutions, both ARMOR-DE and DC3 algorithms outperform EDA++. However,

the proposed adaptive approach significantly enhances the algorithm since the polygon of

AEDA has the best position as it corresponds to the highest quality of solutions. Overall,

the comparison of the performance of the algorithms shows that the proposed adaptive

AEDA approach considerably improves the performance of the non-adaptive EDA++ in

terms of quality without much execution time burden. Following the results provided in

Fig. 17 to Fig. 20, AEDA is the only algorithm that achieves feasible solutions in all
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Figure 20: Algorithm efficiency for energy-optimal transfer (ϵ = 1) with Tmax = 2.6N

runs. It can also be observed that without using the adaptive approach, the algorithm

EDA++ does not always have better performance in terms of quality in comparison to

ARMOR-DE and DC3 (specifically in cases Tmax = 0.5N and Tmax = 2.6N). However,

the improvement due to the proposed adaptive mechanisms makes AEDA competitive

versus its rival methods, in terms of the quality of the obtained solutions.

Following the achieved results from the conducted experiments, several insights can be

obtained regarding the performance of the proposed approach compared with other meth-

ods. These findings can be inferred by comparing the effectiveness and the efficiency of

the algorithms in terms of the quality of the obtained solutions and the execution times.

The first insight is the enhancement of EDA++ via the proposed adaptive operators,

which makes the new algorithm (AEDA) provide solutions with higher quality in terms

of the feasibility and the objective value. The main reason for this outcome lies upon the

workflow of the proposed adaptive operators, in which the presented adaptive schemes

for the truncation factor and the constraints separation threshold guide the optimiza-

tion process in a promising manner to discover feasible transfer trajectories. Clearly the

non-adaptive algorithm (EDA++) does not benefit from this workflow and therefore, the

optimization process is less effective in efficient exploration of the search space. Another

observation is that the adaptive approach has the potentiality of outperforming recently

developed algorithms (ARMOR-DE and DC3) in the discovery of the optimal transfer

trajectories. It is noteworthy that the two selected rival algorithms are constrained con-

tinuous optimization algorithms. However, the optimization process in these techniques
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is not based on probabilistic models. The reason for relatively poor performance of these

algorithms in comparison to AEDA can be justified via the fact that no adaptations are

employed in these algorithms. In the other word, the search process does not take ad-

vantage of the information acquired regarding the complexity of the search domain. Due

to the fact that the exploration and exploitation capabilities of these algorithms are not

affected by the difficulty of the optimization problem, the probability of achieving high

quality feasible solutions are less in comparison to the adaptive approach.

5. Conclusions

The proposed adaptive operators in this research have shown to be a reliable enhance-

ment towards the implementation of EDA framework in spacecraft low-thrust trajectory

optimization. The obtained results indicate that the presented approach based on adap-

tive behavior of the truncation factor and the constraints separation threshold manages to

find high quality feasible solutions. In terms of the feasibility ratio of the obtained results,

the proposed algorithm gives feasible solutions in more than %70 of the runs considering

various thrust levels in the first experiment. The most competitive algorithm in this

regard is the non-adaptive EDA++. The other two algorithms, ARMOR-DE and DC3,

have also shown to be competitive, but only when the thrust level is high (i.e., problems

with relatively lower number of decision variables). Analysis of the relative best scores

indicate that except for the case of Tmax = 1.5N , the best solutions have been achieved

by AEDA. Nevertheless, the obtained result for this case is extremely close to the global

optimal solution that has been found by EDA++. Analysis of the results in the second

experiment shows that the optimization process in the proposed algorithm never ends up

in an infeasible solution as the feasibility ratio of AEDA is %100 of the runs considering

various thrust levels. The question regarding the amount of improvement that AEDA

possesses over the non-adaptive version has shown to be a problem-dependent inquiry.

Following the distribution of the obtained results, it has been observed that the most

noticeable improvement is achieved in the case of Tmax = 2.6N . The computational com-

plexity of the proposed algorithm has shown to be the main barrier in this framework,

which makes the optimization process take more time to adapt the operators. In this

regard, ARMOR-DE is the most challenging algorithm as it has relatively smaller execu-

tion times in comparison to AEDA. However, observation on the quality of the obtained
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solutions indicates that the longer execution time is a fair exchange for having higher

feasibility ratio and solutions with higher optimality.

Many aspects of the proposed approach can be considered as a potential subject for

future research. On of the key elements of the presented framework is the definition of

the problem identifiers. The proposed identifiers in this research were mainly based on

the desired changes in the shape and orientation of the orbit along with the accessible

acceleration. Deep analysis of the performance of the algorithm by altering the current

problem identifiers, or developing new identifiers is a promising subject for future re-

search. Also, the adaptive approach in this research was aimed at the seeding mechanism

and the selection mechanism of EDA++. The door has been left open to target other

mechanisms of EDA++ in developing novel operators for optimization. The selection

of the dispersion metric is another factor that can be further evaluated. As this is the

first study to utilize FLA techniques in spacecraft trajectory optimization, it is unclear

whether dispersion was the best option for developing adaptive operators within the pro-

posed direct approach. Other FLA metrics, such as fitness distance correlation (FDC),

length scale (LS), and fitness cloud (FL), may also be used to identify optimal transfer

trajectories [30]. However, it is important to note that each metric has its own limitations

and constraints. For instance, FDC necessitates the availability of the global optimal so-

lution, which is usually unknown in the majority of spacecraft trajectory optimization

problems, making it unsuitable.
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[26] Dilcia Pérez and Yamilet Quintana. A survey on the weierstrass approximation

theorem. arXiv preprint math/0611038, 2006.

[27] Abolfazl Shirazi, Josu Ceberio, and Jose A Lozano. An evolutionary discretized

lambert approach for optimal long-range rendezvous considering impulse limit.

Aerospace Science and Technology, 94:105400, 2019.

[28] Régis Bertrand and Richard Epenoy. New smoothing techniques for solving bang–

bang optimal control problems—numerical results and statistical interpretation. Op-

timal Control Applications and Methods, 23(4):171–197, 2002.

[29] Fanghua Jiang, Hexi Baoyin, and Junfeng Li. Practical techniques for low-thrust

trajectory optimization with homotopic approach. Journal of guidance, control, and

dynamics, 35(1):245–258, 2012.

[30] Yuan Sun, Saman K Halgamuge, Michael Kirley, and Mario A Munoz. On the

selection of fitness landscape analysis metrics for continuous optimization problems.

In 7th International Conference on Information and Automation for Sustainability,

pages 1–6. IEEE, 2014.

[31] Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy

based on deep reinforcement learning. Applied Soft Computing, 111:107678, 2021.

[32] Monte Lunacek and Darrell Whitley. The dispersion metric and the cma evolution

strategy. In Proceedings of the 8th annual conference on Genetic and evolutionary

computation, pages 477–484, 2006.

47



[33] Augusto Dantas and Aurora Pozo. On the use of fitness landscape features in meta-

learning based algorithm selection for the quadratic assignment problem. Theoretical

Computer Science, 805:62–75, 2020.

[34] Rachael Morgan and Marcus Gallagher. Sampling techniques and distance metrics

in high dimensional continuous landscape analysis: Limitations and improvements.

IEEE Transactions on Evolutionary Computation, 18(3):456–461, 2013.

48


