
Spacecraft Trajectory Optimization: A review of
Models, Objectives, Approaches and Solutions

Abolfazl Shirazi1

Basque Center for Applied Mathematics - BCAM, Bilbao, 48009, Spain

Josu Ceberio2

University of the Basque Country UPV/EHU, Donostia, 20018, Spain

Jose A. Lozano3

Basque Center for Applied Mathematics - BCAM, Bilbao, 48009, Spain
University of the Basque Country UPV/EHU, Donostia, 20018, Spain

Abstract

This article is a survey paper on solving spacecraft trajectory optimization
problems. The solving process is decomposed into four key steps of math-
ematical modeling of the problem, defining the objective functions, devel-
opment of an approach and obtaining the solution of the problem. Several
subcategories for each step have been identified and described. Subsequently,
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solving the problems. Finally, a discussion on how to choose an element of
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1. Introduction

The spacecraft trajectory optimization problem can be described as the
discovery of a trajectory that satisfies some criteria, including initial and
terminal conditions. In recent years, considerable progress has been made
in the development of methods to find optimal trajectories for spacecraft in
various space missions. Within this progress, each step in spacecraft trajec-
tory design can be categorized according to the elements that are involved in
finding a solution to the optimal trajectory problem, such as the mathemati-
cal model, objective, approach, or, more importantly, the method, technique
and algorithm.

Perhaps the first serious attempt to categorize methods for spacecraft tra-
jectory optimization was made by Betts [1] in 1998. The main classification
made by Betts considered two famous methods, known as direct and indirect
methods, and the primary related techniques in each were summarized. In
2012, Conway [2] made another comprehensive contribution to the numerical
approaches applied in dynamical systems. He provided an excellent overview
of different methods, similar to Betts’ survey, along with practical examples.
However, the dynamical systems considered in his survey are in general form.
Other attempts are also made but limited to specific space missions, such as
Earth-Moon trajectories [3], space rendezvous [4], planetary entry [5] and
libration points [6], [7]. Different classifications are presented for spacecraft
trajectory optimization problems in these researches. Based on the purposes
of their taxonomy, each approach or solution has its own advantages and dis-
advantages [8]. These surveys focused on specific steps of the whole process
rather than a general scheme for spacecraft trajectory optimization. More-
over, it is clear from the literature that comparing different taxonomies can
be time consuming, although it is generally less complicated than developing
one from scratch. While a great deal of research has been done regarding the
methods and techniques, an outline that categorizes the key elements within
the general process of spacecraft trajectory optimization is missing. This pa-
per presents such a scheme and it is considered complementary to all of the
previously published survey articles in this subject. It reflects the research
that has been done over the past decade while simultaneously providing a
road map for the general process of spacecraft trajectory optimization.

Before proceeding to the details of the review, it is important to distin-
guish between several terms in spacecraft trajectory optimization terminol-
ogy. By looking through the literature, it can be highlighted that a vast
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number of papers are dedicated to spacecraft trajectory optimization with
different terminologies. Approaches, solutions, methods, strategies, tech-
niques and other terms are often used interchangeably. This review also tries
to make a distinction between such terms, and uses a clear terminology in
order to avoid misunderstandings and confusion when referring to a method,
approach, technique or algorithm. It should also be noted that sometimes
different parameters are shown with same symbols in literature. Therefore,
in this review, every newly introduced parameter in the equations is defined
locally in order to avoid misunderstandings with other possible parameters
with same symbols.

The entire process of solving a spacecraft trajectory optimization problem
can be divided in four steps as depicted in Fig. 1. This general process
includes mathematical modeling of system dynamics, defining appropriate
objectives, developing an approach and, lastly, achieving the solution. Traces
of these key elements can be found in textbooks by Betts [9] and Conway
[10].  
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Figure 1: General scheme of spacecraft trajectory optimization process

These steps are represented by model, objective, approach and solution
respectively. On the other hand, each space mission has several components
such as mission requirements, goals, expected accuracy, desired convergence,
mission plan, etc. Each of these factors affects the steps of the mentioned
process differently. Therefore, it is important to focus on the taxonomies in
each step based on the space mission components in order to make a good
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decision when choosing a model or employing a method in the spacecraft
trajectory optimization process.

The first step to solve not just a spacecraft trajectory optimization prob-
lem but indeed any orbital mechanics problem involves a firm understanding
of the dynamics inherent in the system. It refers to the mathematical mod-
eling of the problem which involves choosing a set of states to represent the
system and derivation of motion equations for spacecraft.

The second step is handling the mission objectives via defining cost func-
tions. Two categories can be considered for this step, one according to the
type of the objectives and the other according to the number of objectives.

As the third step, the type of methods and techniques which are dedicated
to solving the trajectory design problem are the main feature that character-
izes the approach. This step is divided into two categories called analytical
and numerical approaches. Analytical approaches are mainly based on the
well-known optimal control theory [11]. The purpose of this theory is the
determination of a time history of controls that satisfies the physical con-
straints of the system while minimizing some performance criteria [12] i.e.,
the cost functions defined in the previous step. There also exist several nu-
merical approaches to solve optimization problems related to space transfers
[10]. They fall essentially into two main categories. The first one is called
direct methods, which attempt to find the minimum of the cost function
by considering state and input vectors. The second one is indirect meth-
ods, which involve adjoint equations alongside state and input vectors based
on the Pontryagin’s Principle [11]. Each one of these two large categories
is characterized by both positive and negative aspects, intrinsically limiting
their operational fields.

The fourth step is to solve the problem regarding the developed approach.
If the analytical approach is developed in the third step, the solution is likely
to be a closed form analytical solution. However, if the numerical approach
is used, the problem usually turns into a black-box optimization problem
and needs numerical algorithms to achieve a solution. Most of the spacecraft
trajectory optimization problems end in the latter form, to be solved by
numerical techniques rather than by means of an analytical solution. The
reason is that a typical spacecraft optimization problem does not have a
closed form solution due to its nonlinearity, unless specific conditions and
assumptions are considered in the approach. Such assumptions may limit
the matching between simulation and reality in spacecraft motion.

This review tries to propose a complete taxonomy of spacecraft trajec-

4



tory optimization problems, along with recently developed concepts and tra-
ditional approaches, which covers most of the aspects of this field. The idea
is to bring the advantages and disadvantages of various models, objectives,
approaches and solutions based on the findings of more than two hundred
research papers. In contrast, this review excludes many of the technical
details and, instead, provides a road map of currently available tools. Gen-
eral concepts are briefly described, and references are included for further
investigation. In addition, this paper tries to consolidate seemingly differ-
ent concepts, methods, and terminology stemming from diverse applications.
While a great deal of spacecraft trajectory optimization research has been
carried out in the aerospace community, this review attempts to draw from
work that has been done in other disciplines as well. It also provides con-
clusions that can be useful for other disciplines such as applied mathematics
and engineering.

This review is organized as follows: The next four sections are dedicated
to the taxonomies of the four steps mentioned in the process of spacecraft tra-
jectory optimization respectively. Section 2 provides the mathematical mod-
els required in order to formulate the necessary components of the spacecraft
trajectory optimization problem. It outlines several choices of mathemati-
cal sets and their corresponding equations of motion according to different
categories of space missions. Objective functions in spacecraft trajectory op-
timization problems, their representation and types are discussed in Section
3. Section 4 details the approaches used in solving the spacecraft trajectory
optimization problem, as well as comparisons of different methods and tech-
niques. Section 5 is dedicated to optimization algorithms, including nonlinear
programming and metaheuristics. This section aims to taxonomize the opti-
mization algorithms according to space missions and their usage in spacecraft
trajectory optimization problems. Section 6 summarizes the discussions from
this review. It also presents suggestions for future study and new trends in
trajectory optimization of spacecraft. Finally, the conclusions are provided
in Section 7.

2. Model

As the first step of facing the spacecraft trajectory optimization problem,
the dynamics of the spacecraft need to be mathematically modeled. The
spacecraft trajectory model can be referred to a set of ordinary differential
equations representing a path or time history of position and velocity of the
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spacecraft. The equations of motion for the spacecraft which serves as the
model can be generally described in first order form as follows [12]:

~̇x = f(~x(t), ~u(t), t) (1)

where t represents the time, ~x(t) is an n-dimensional time history of the state
vector and ~u(t) is an m-dimensional time history of the control vector, which
serves as the system input. The state vector contains the state variables
which can be the position and the velocity vectors of the spacecraft. This
general representation is used in the literature as the basic mathematical
model for spacecraft trajectory and can be categorized in different aspects
and forms, as depicted in Fig. 2.
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Figure 2: Taxonomy of mathematical models in spacecraft trajectory optimization

The overall taxonomy of mathematical models of the spacecraft in trajec-
tory optimization problems consists of two minor categories which are trans-
fer type and equations of motion. While the behavior of the input ~u(t) is the
matter of interest in the first category, the focus in the second category is
on the representation of the whole differential equations as in f(~x(t), ~u(t), t).
Although other aspects, such as dimensions (2D and 3D), could be also con-
sidered in the taxonomy, these two categories are chosen in this taxonomy
since they can cover and classify most of the research according to the liter-
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ature.

2.1. Models based on transfer type
In mathematical modeling of the spacecraft trajectory in an orbit transfer,

the simulation of the system inputs is an important issue which has a great
effect on the trajectory optimization process. Depending on the type of space
mission, the model can be either impulsive or continuous.

2.1.1. Impulsive model
Mathematical modeling based on impulsive model is the traditional proce-

dure used to simulate the spacecraft maneuver. In this modeling, the inputs
of the system are assumed to be zero ~u(t) = 0 and the maneuver by the space-
craft is considered as sudden velocity increments (∆v > 0) with zero burn
times (∆t = 0). If the gravitational acceleration of only one giant mass (for
example the Earth) is considered for the problem, the presented differential
equation of motion based on state variables in Eq. 1 may be reduced and sim-
plifies into some algebraic equations based on orbital elements. This model
is relatively simple to be used in simulation of space trajectory with large
accelerations and a rapid spacecraft response to commanded maneuvers. It
allows to simulate nearly instantaneous velocity changes necessary for large
orbital maneuvers [13]. Impulsive model is typically used when engines with
relatively low specific impulse (Isp) and high thrust level are employed. This
kind of model, better known as the Kepler model, which was first proposed
by Sims and Flanagan [14] to approximate low-thrust trajectories as a series
of impulsive ∆v’s connected by conic arcs, is depicted in Fig. 3.

Time 
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Figure 3: Impulsive discretization scheme
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In the impulsive model, a segment (ti to ti+1) corresponds to an impulsive
∆v which can be analyzed by an analytical Kepler propagation with respect
to a primary body (Sun, Earth or other planets). Since a closed-form solution
is usually known for the state propagation, no numerical integration of the
equations of motion is needed, which results in fast computations. The well-
known Hohmann transfer [13] is the most practical transfer in which the
impulsive model is taken into account for initial design and analysis of orbits
in space mission [15].

An advanced concept of impulsive model is called impulsive thrusting. In
this model, the trajectory is locally treated as continuous when the engine is
on, and the thrust level and the burn time will be considered in the problem.
This type of model is sometimes used for optimization of continuous thrust
orbit transfers. One example is [16], in which a multi-impulse extended
method is proposed for low-thrust trajectory optimization. Some applications
of this model in the literature are shown in Table 1, which are tabulated based
on the type of space mission.

Mission References
Rendezvous [17] [18] [19] [20] [21]

Typical transfers [22] [23] [24] [25] [26] [16] [27]

Gravity assist [24] [25] [28] [29] [30] [31]
[32] [33] [34] [35] [36]

Table 1: Spacecraft trajectory design and optimization based on impulsive model\thrust

As stated, the impulsive model is suitable for space missions with sud-
den velocity increment. Thrust phases for these missions are typically short
compared to the overall mission time, which makes the problem relatively
straightforward. As a result, thrust arcs are modelled as isolated, singular
events, and the continuous problem can be reduced to a discrete optimization
problem which can be represented with the impulsive model. In such cases,
the impulsive ∆v’s readily represents deep space maneuvers, especially for
space missions with several segments (such as gravity assist maneuvers). If
no maneuver is needed at the beginning of a segment, the optimizer sim-
ply drives the corresponding ∆v magnitude to zero. The optimization of
the number of impulses, as well as their respective locations, is therefore
automatically tackled.
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2.1.2. Continuous model
The second type for mathematical modeling of the spacecraft is the con-

tinuous model. Mathematical models based on this concept are more precise
but also more complicated in comparison to impulsive models, since the tra-
jectory is dealt with considering non-zero inputs (~u(t) 6= 0). The comparison
between impulsive and continuous models is implicitly a mirror of compar-
ing high and low-thrust space missions. From the viewpoint of performance,
low-thrust propulsion can improve fuel consumption efficiency for space mis-
sions due to their extremely high Isp compared with high-thrust chemical
propulsion. However, typical low-thrust trajectories present a major chal-
lenge namely the extremely low forces that they generate. Table 2 provides
detailed characteristics for some specific low and high-thrust propulsion sys-
tems [37], [38], [39] [40], [41].

Propulsion system Thrust (N) Isp (s)
Chemical engine 0.1− 106 140-460
Cold gas thruster 0.05− 200 50-250

Resisto-jet 0.002− 0.1 150-8000
Arcjet 0.002− 0.7 400-1500

Ion thruster 1× 10−5 − 0.2 1500-5000
Hall thruster 1× 10−5 − 1 1500-6000

Pulsed plasma,thruster 5× 10−5 − 0.01 500-2000
Solar sail 0.001− 0.1 ∞

Table 2: Characteristics of typical propulsion systems

Unlike high-thrust trajectories, the transfer time in low-thrust trajectories
is relatively high. Therefore, the continuous model is more adequate for low-
thrust trajectories. However, there is some research which deals with the
employment of continuous model in analyzing high-thrust transfers as well.
For example, in [42], the problem of the optimal space trajectory for the
mission to the Apophis asteroid approaching the Earth has been studied
with the employment of a continuous model for the departure phase from
Earth.

The general representation of continuous transfer is the extension of the
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Newton equation for the N-body problem as in Eq. 2.

~̈r = −G
n∑
i=1

mi(~r − ~ri)
|~r − ~ri|3

+ ~Γ (2)

where ~r is the position of the spacecraft, ~ri are the positions of n celestial
bodies with masses mi, and G is the gravitational constant. ~Γ represents
the summation of any accelerations due to sources other than the gravita-
tional force of celestial bodies, such as the space perturbations or the thrust
provided by the spacecraft propulsion system [43]. It is clear that, by con-
sidering the position vector ~r and its time derivative ~̇r as the state vectors
(i.e., ~x(t) = [~r ~̇r]), Eq. 2 will be a specific form of the general model rep-
resentation as in Eq. 1 while considering ~Γ as a function of ~u(t). This is
the general equation for any continuous spacecraft trajectory optimization
problem. Obviously, by setting ~u(t) = 0 and considering the maneuvers
as sudden velocity increments, the continuous model will turn into the im-
pulsive model. For specific missions and applications such as unperturbed
orbits around Earth, the orbit propagation may be simplified to orbital el-
ements. Therefore, the complexity of the model can be changed for various
applications, from very simplistic (for example Hohmann transfer) to heavily
complicated (ex. low-thrust interplanetary transfer).

2.2. Models based on equations of motion
Besides the concept of a mathematical model for spacecraft trajectory

optimization, the representation of the dynamics of the spacecraft motion is
a key to categorize the model. Different forms of Eq. 2 are considered in
the literature depending on the space mission, falling into two main groups
of two-body problems and N-body problems. Obviously, this category does
not conflict with the previous one. In the other words, one can simulate
two-body problems or N-body problems with either impulsive or continuous
models.

2.2.1. Typical two-body problems
The simplest model for spacecraft dynamics is the two-body problem

model [13]. This model begins with two point masses and describes their
mutual gravitational attraction to each other [15]. In this modeling, the
mass of the spacecraft is assumed to be much smaller than the mass of the
body it is orbiting. This allows the spacecraft’s mass and its gravitational
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effects on the larger body to be neglected. Moreover, the frame of reference is
inertial. This allows for derivatives to be taken without regarding the motion
of the reference frame. Besides, both the celestial body and the spacecraft
are supposed to be point masses and no other forces are applied to either
body [44]. These assumptions allow for the basic formulation of the two-body
problem, however they constitute an imperfect model.

Inertial coordinates
The most common mathematical model of spacecraft dynamics regarding

the mentioned assumptions for typical two-body problems can be described
as the well-known non-Keplerian two-body problem equation [13], [44]:

~̈r = − µ
r3~r + ~γ (3)

This equation of motion is best described initially using an independent
inertial coordinate frame. In this equation, ~r denotes the position of the
spacecraft relative to inertial coordinate system, µ is the gravitational con-
stant of the central mass, and ~γ is the acceleration due to engine thrust.
Rewriting this equation in scalar form yields the following set of first-order
derivatives [15]: 

ṙx
ṙy
ṙz
v̇x
v̇y
v̇z


=



vx
vy
vz

− µ
r3 rx + γx

− µ
r3 ry + γy

− µ
r3 rz + γz


(4)

where rx,ry,rz are the position components (r = rx~i+ ry~j+ rz~k), vx,vy,vz are
the velocity components (~r = vx~i+vy~j+vz~k) and γx,γy,γz are the acceleration
components (~γ = γx~i+ γy~j + γz~k) in Earth Centered Inertial (ECI) frame.

Besides Cartesian form, cylindrical coordinates are sometimes considered
in research as follows. 

r̈ − rθ̇2 + µ

s3 r

rθ̈ + 2ṙθ̇
z̈ + µ

s3 r

 =

γrγθ
γz

 (5)
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where s =
√
r2 + z2, and γr,γθ,γz are the acceleration components in cylin-

drical coordinate systems. These general trajectory equations of motion are
vastly used in many spacecraft trajectory optimization problems [45], specif-
ically for analyzing perturbed orbits [46] and low-thrust transfers [47]. Al-
though the Cartesian and cylindrical forms are often used for typical space-
craft trajectory optimization problems [48], other forms based on the varia-
tion of parameters are sometimes used in spacecraft trajectory optimization.

Classical orbital elements
Another form of mathematical model for spacecraft trajectory optimiza-

tion is in terms of classical orbit elements. The six classical orbital elements
[44] can be derived from the position and velocity vectors directly [13]. Nev-
ertheless, sometimes the following Lagrange equations are used in mathemat-
ical modeling of spacecraft dynamics [44]:

da

dt
=
( 2e sin θ
n
√

1− e2

)
γr +

(2a
√

1− e2

nr

)
γt (6)

de

dt
=
(√1− e2 sin θ

na

)
γr +

(√1− e2

na2e

(a2(1− e2)
r

− r
))
γt (7)

di

dt
=
(
r cos(ω + θ)
na2
√

1− e2

)
γn (8)

dΩ
dt

=
(

r sin(ω + θ)
na2
√

1− e2 sin i

)
γn (9)

dω

dt
=
(
−
√

1− e2 cos θ
nae

)
γr +

(√1− e2

nae

(
1 + r

a(1− e2)
)

sin θ
)
γt− (10)(

r cot i sin(ω + θ)
na2
√

1− e2

)
γn

dM

dt
=
((1− e2) cos θ

nae
− 2r
na2

)
γr −

(1− e2

nae

(
1 + r

a(1− e2)
)

sin θ
)
γt+ (11)

n

where the classical orbital elements, a, e, i, Ω, ω, M are semi-major
axis, eccentricity, inclination, right ascension of ascending node (RAAN),
argument of perigee and mean anomaly. n is the mean motion, defined as
n =

√
µ

a3 and θ is the true anomaly. The parameters γr, γt, γn denote radial,
tangential, and normal components, respectively [49].
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The advantage of using this set of equations is that they provide the vari-
ation of classical orbital elements directly from the acceleration without the
need for state variables. This method of defining an orbital state is intuitive
but unfortunately has a number of singularities that tend to complicate the
equations of motion. For instance, at zero inclination the right ascension of
ascending node loses meaning. Similarly, for zero eccentricity the argument
of perigee becomes indistinguishable from the true anomaly. These singular-
ities can be clearly seen in their equations of motion. Due to the existence of
these singularities, the classical orbital elements are not necessarily the best
set of states for numerical analysis.

Modified equinoctial orbital elements
The other model of completely defining an orbit is by the use of the

modified equinoctial orbital elements. This element set maintains the math-
ematical advantages of the classical orbital elements without going singular
for circular or prograde equatorial orbits. The set of differential equations
defining the spacecraft dynamics based on equinoctial orbital elements is as
follows [9]:

dp

dt
= 2

√√√√p3

µ

1
W
fN (12)

df

dt
=
√
p

µ

1
W

(
W sin(L)fs + A(L)fN − g(h sin(L)− k cos(L))fW

)
(13)

dg

dt
=
√
p

µ

1
W

(
−W cos(L)fs +B(L)fN + f(h sin(L)− k cos(L))fW

)
(14)

dh

dt
= 1

2

√
p

µ

X

W
cos(L)fW (15)

dk

dt
= 1

2

√
p

µ

X

W
sin(L)fW (16)

dL

dt
=
√
µ

p3W
2 +

√
p

µ

1
W

(
h sin(L)− k cos(L)

)
fW (17)
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where the following abbreviations have been used:

s =
√

1− f 2 − g2 (18)
X = 1 + h2 + k2 (19)
W = 1 + f cos(L) + g sin(L) (20)

A(L) = f + cos(L)(1 +W ) (21)
B(L) = g + sin(L)(1 +W ) (22)

where p, f, g, h, k and L are the modified equinoctial orbital elements. Also,
fN , fS, and fW are components of the perturbing acceleration in the direc-
tions perpendicular to the radius vector in the direction of motion, along the
outward radius vector, and normal to the orbital plane in the direction of the
angular momentum vector, respectively. This set of equations is employed in
a lot of research with various space missions including interplanetary trans-
fers with gravity assist maneuvers [50], [51]. Besides, the use of modified
equinoctial elements to describe the osculating orbits is a good choice due to
the easy formulation and robustness to uncertainties. See [52] for an instance
regarding these characteristics.

Comparison
Other forms of differential equations may be used as the model for typ-

ical two-body problems in spacecraft trajectory optimization. To be more
specific, there are twenty two identified candidate orbit element sets plus
variations defined in terms of Euler angles, Euler parameters, functions of
classical elements, quaternions, set-III elements, fast or slow variables, or
canonical variables. These other forms of orbital elements are well explained
in a survey by Hintz [53]. However, the model presented by the equation
of state vectors including position and velocity is used more frequently in
spacecraft trajectory optimization problems. The three sets of equations for
modeling the two-body problems are compared in Table 3.

Inertial coordinates Classical orbital
elements

Modified equinoctial
orbital elements

Having physical meaning Normal High Low
Extending to other forms Easy Hard Hard
Suffering from singularities No Yes No
Practicality for numerical averaging No No Yes
Complexity of equations Low High Medium

Table 3: Comparison of dynamic models for continuous thrust transfers

14



As it has been demonstrated, when external acceleration is introduced,
time variation of classical orbital elements can be calculated based on the
standard variation of physical parameters. Euler angles are used to parame-
terize the orientation of the orbit plane. However, due to the inherent singu-
larities of the Euler angles, the variational equations may become singular for
zero eccentricity and/or zero inclination because Ω and ω are indeterminate
for i = 0, or π and ω is indeterminate for e = 0.

While the modified equinoctial orbital elements avoid the singularities
of the classical orbital elements, the main disadvantage of using them is
that from direct inspection it is not intuitively obvious what is happening
physically to the system. The classical orbital elements directly relate to the
physical geometry of the orbit and are much simpler to directly interpret
than the equinoctial orbital elements.

There is significant freedom in the choice of a suitable set of state variables
or elements. The modified equinoctial element set is the only one that is non-
singular for all values of eccentricity and inclination. This set also employs
elements that are not far from the classical ones, so that transforming and
interpreting them in terms of physically significant parameters is relatively
easier than using classical orbital elements. Therefore, it is advisable to use
the modified equinoctial orbit element set for the research and technology
development task. They can also be used for the integration of orbits with
special and general perturbations, as well as differential corrections in orbit
determination. However, the other orbit element sets could prove to be
convenient in specific applications where the singularities are not a problem
[53].

2.2.2. Rendezvous
Besides the models for typical two-body problems, the general equation

of motion can be reformulated and turned into new representations regarding
any special space missions. One of the challenging space missions in litera-
ture is the space rendezvous. Rendezvous in space between two spacecraft
is accomplished when both space vehicles attain the same position vector
and velocity vector at the same time. However, at the time the rendezvous
sequence is initiated, they may be very far apart, possibly with one satellite
at liftoff. The first part of a rendezvous sequence is the phasing step, which
is to perform the maneuvers in the timing sequence that will bring the two
satellites into close proximity. For this step, the state vectors model which
includes the position and velocity [44] is usually valid and selected as the
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general dynamic equation for describing the spacecraft motion.
The next step is the terminal rendezvous. It performs the maneuvers

that induce the relative motion between the spacecraft that is required for
rendezvous and docking, i.e., the motion of one spacecraft (chaser or active
vehicle) with respect to the other (target or passive vehicle). The coordi-
nate frame is attached to one (target) of the satellites in this maneuver [54].
The most used model for this mission in spacecraft rendezvous is given by
Clohessy-Wiltshire equations, which have been widely adopted to study the
spacecraft relative motion problems. By assuming small distance between
the chaser and the target, the linearized equations of the relative motion
between them can be described as below [13], [54]:ẍ− 2nẏ − 3n2x

ÿ + 2nẋ
z̈ + n2z

 =

γxγy
γz

 (23)

where n denotes the mean motion of the target vehicle. These equations
can be used to study the forces required to perform an orbit rendezvous, the
displacements from a reference trajectory produced by maneuvers or other
velocity changes and the effects of perturbations on the displacements from
a reference trajectory. These second-order differential equations are valid
for small displacements (a few tens of kilometers in the radial and out-of-
plane directions) but remain correct for an order of magnitude (hundreds of
kilometer) of larger change in the down track coordinate. Several articles can
be referred to as samples of rendezvous missions for additional information
[55], [18].

The Clohessy-Wiltshire equation set is derived from the assumptions that
the two spacecraft run on neighboring two-body circular orbits and the rela-
tive distance between the two spacecraft is much shorter than their geocentric
distance. Moreover, first-order approximations are used so that second- and
higher-order terms of relative positions and velocities are ignored. It needs
improvements in order to describe relative trajectories not satisfying these
assumptions. For the sake of brevity, the detailed description of improved
relative dynamics equations for space rendezvous is omitted here and the
reader is referred to the survey by Luo et al. in 2014 [4].
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2.2.3. Libration points
Libration points, sometimes referred as Lagrange’s points, are essentially

the gravitational equilibrium in celestial mechanics, where a spacecraft is able
to keep stationary with respect to the primary and secondary bodies without
fuel consumption. Therefore, they can motivate numerous space missions
due to their special locations. Simulation of transfers to these points needs
models based on N-body problem since the gravitational force of more than
one celestial body is considered on the spacecraft. The trajectories used by
these missions are solutions of the Circular Restricted Three-Body Problem
(CR3BP). CR3BP is the simplest model to study the three-body problem,
as well as the most useful one to investigate the motions and phase space
structure near libration points. However, it is sometimes not accurate enough
for astronautical applications.

The planar CR3BP describes the motion of a spacecraft moving in the
gravitational field of two primaries P1 and P2, with masses m1 and m2. The
equations of motion in the normalized synodic reference frame, are [44]:(

ẍ− 2ẏ
ÿ + 2ẋ

)
=
(

Ωx

Ωy

)
(24)

with the effective potential given by

Ω(x, y) = 1
2(x2 + y2) + 1− µ

r1
+ µ

r2
+ µ(1− µ)

2 (25)

and

µ = m2

m1 +m2
(m2 > m1) (26)

r1 =
√

(x− µ)2 + y2 (27)

r2 =
√

(x+ 1− µ)2 + y2 (28)

where r1 and r2 denote the distances from the particle to P1 and P2, respec-
tively, and µ (not to be confused with the gravitational constant in previous
subsections), known as the mass parameter of the CR3BP, is the dimension-
less mass of P2. The normalized variables are such that the distance between
P1 and P2, the sum of their masses, and their angular velocity around the
barycenter are normalized to one. So, one complete rotation of the primaries
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around their barycenter with respect to an inertial frame occurs in 2π dimen-
sionless units of time, and, in the synodic frame, P1 and P2 are fixed at (µ, 0)
and (µ−1, 0), respectively. Halo orbits located around the collinear libration
points in the CR3BP can be well established regarding this modeling. See
[56] and [57] for some instances.

The presented dynamic equations are suitable for the 2D problem. The
3D form of CR3BP has one additional differential equation for Z axis. Be-
sides, the center of the main coordinate system may be modified and shifted
toward different masses in some research. The general 3D representation of
CR3BP is as follows:

ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈

 =



−(1− µ)(x+ µ)
r3

1
− µ(x− 1 + µ)

r3
2

−(1− µ)y
r3

1
− µy

r3
2

−(1− µ)z
r3

1
− µz

r3
2


+

γxγy
γz

 (29)

Numerous researches use this model for libration points [58]. The more gen-
eral representation of system dynamics for Lagrange’s points is the extended
continuous thrust form for N-body problem in the Earth-centered inertial
coordinate frame as [13]:

~̈r = −−µE
r3 +

N∑
i=1

µi

(
~ri − ~r
|ri − r|3

− ~ri
r3
i

)
+ ~Γ (30)

where µi is the gravitational constants for any of the planets considered in
the model, while ~ri is the position vector for that planet. An example of
this model is used in [59], which considers the solar radiation pressure as the
perturbed acceleration.

Other forms of equations describing the dynamics of Lagrange’s points
vary for different coordinate systems and expected accuracies. One represen-
tation is the Elliptical Four-body Problem (EFBP) in which the Moon moves
around the Earth in an elliptical motion and the Earth-Moon system moves
around the Sun in a circular orbit. All the central bodies are in the same
plane. Although the EFBP is not the most faithful model for the spacecraft,
it does include the most important facts, the Sun’s direct influence and the
Moon’s elliptical motion, which cannot be analyzed in the Circular Restrict
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Three-Body Problem (CR3BP). More details about mathematical models for
libration points can be found in [60].

2.3. Summary
In spacecraft trajectory optimization, modeling the engineered system

dynamics is the primary step. The model of the dynamic system is a set of
equations (differential equations) that represents the dynamics of the system
using laws of physics. The model allows the study of spacecraft transients
and steady state performance. Examples of models in spacecraft trajectory
optimization are tabulated in Table 4.

Mission References

Inertial coordinates [61] [62] [63] [64] [65] [66] [67]

Modified equinotical elements [68] [69] [70] [71] [50] [51] [72] [73]
[74] [75] [76] [77] [78] [79][80]

Rendezvous [81] [82] [83] [84] [20] [18] [85] [86]
Libration [87] [72] [88] [85] [89] [90] [91] [92]

Table 4: Continuous model in spacecraft trajectory optimization

As the model becomes more detailed, it also can become more accurate.
Model accuracy needed for spacecraft trajectory optimization is normally
simpler than the model used for system simulation. Ignoring some physical
phenomena, linearly approximating nonlinear characteristics and using the
approximation of lumped parameters in spacecraft are the ways which turn
complex models to simple ones for trajectory optimization.

3. Objective

The second key element of the spacecraft trajectory optimization process
is defining objectives based on the space mission requirements. Objectives
are defined by means of some functions, usually referred to cost functions
in optimal control terminology or objective functions in computer science
terminology. They may comprise fuel mass, total velocity increment, state
errors, transfer time, or acceleration. Besides, other components may be
also considered in some space missions due to the employment of specific
techniques or mission criteria.
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Although the objective functions vary from problem to problem, its gen-
eral form, better known as Bolza cost function [11], can be defined as follows
[12]:

J(~x, ~u, t) = h(~x(tf ), tf ) +
∫ tf

t0
g(~x(t), ~u(t), t)dt (31)

where t0 and tf are the initial and final times, respectively. The function h
represents the Mayer term which denotes the cost related to the final states
and g is referred to as the Lagrange term or the running cost which tracks the
state and control costs that occur through their entire time histories. This
general form of the objective function represents a complete cost function in
optimal control theory. The objective function may contain just the Mayer
term, just the Lagrange term, or both, depending on what is being optimized
in space travel. Various forms of objective function can be categorized in two
different aspects, including type and quantity as illustrated in Fig. 4.

OBJECTIVE 

TYPE 

Mayer 

Time 

Velocity 
increament 

Constraints 

... 

Lagrange 

Acceleration 

Fuel mass 

... 

QUANTITY 

Single objective 

Multi-objective 

Figure 4: Taxonomy of objectives in spacecraft trajectory optimization

One common and familiar definition between all types of objective func-
tions is presented by Conway [2]. It states that the objective of any space
mission depends on two concepts, including having minimum time or mini-
mizing control effort, referring relatively to the Mayer and Lagrange terms
in Eq. 31. This type of definition can be considered as a subcategory for the
type of the objectives. As for the number of objectives, cost functions can
be roughly divided into single objective and multi-objective ones [93]. As
will be discussed in this section, the simplest way to deal with multipurpose
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spacecraft optimization problem is to consider an overall objective function
being the weighted sum of the single objective functions [94].

The following subsections are dedicated to the different types of objective
functions according to the taxonomy, ending with a brief discussion about
the typical techniques for dealing with multi-objective problems.

3.1. Mayer
The first types of objectives are those which are related to the Mayer

term. These objectives are functions of state variables at the end of a transfer
trajectory.

3.1.1. Time
The time in spacecraft trajectory optimization problems is simply the

transfer time in space travels. While the control effort has different kinds of
representations as previously mentioned, such as fuel mass, thrust level or
acceleration, the time has a simple representation in most of the problems.
For minimum time problems, the cost function can be simply defined as:

J = tf (32)

where tf is the transfer time. One example regarding the use of this cost
function is the trajectory optimization of libration points in Earth-Moon
system, in which the duration of flight to perform the mission purposes is
expected to be minimized [95]. Shang et al. [96] used this cost function to
minimize the transfer time for a Earth to Mercury space mission utilizing
solar sails.

3.1.2. Velocity increment
In many spacecraft trajectory optimization problems the objective is to

minimize the velocity increment or the summation of the increments in mul-
tiple phases. A typical example is the well-known multiple gravity assist
mission with n stages [34]. In this problem each impulse causes a mass con-
sumption proportional to the modulus of the change of velocity. Therefore,
in order to minimize the overall mass consumption, the following objective
function is usually considered:

J =
n∑
i=0
|∆vi| (33)
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where ∆vi is the single change of velocity dedicated to each trajectory be-
tween two astronomical body (planets or asteroids). This representation of
cost function is very popular specifically for multi-impulse problems [22], [16]
and even rendezvous missions [55], [18].

3.1.3. Initial and terminal conditions
Although the terminal conditions (or even in some cases the initial con-

ditions) are generally considered as constraints, there are some researches
which deal with these constraints as objectives [97]. The general form will
be as follows:

J = φ(~x(t0), ~x(tf )) (34)

where φ is the initial and terminal constraint. Note that this function is more
general than the function h given at Eq. 31. This kind of cost function is
used in several articles including gravity assist maneuvers [50], [51], contin-
uous interplanetary trajectories [96], spacecraft reentry [98] and orbit rising
mission [99].

3.2. Lagrange
Unlike the objectives related to the Mayer term, the second types of

objectives are functions in the form of Lagrange term in Eq. 31. These costs
are integrals of inputs or state variables in the transfer trajectory.

3.2.1. Acceleration
One cost function which is usually considered to be minimized in space

missions is the integration of the square of spacecraft acceleration within the
transfer trajectory. Its representation is as follows:

J = 1
2

∫ tf

t0
γ2dt (35)

where γ is the magnitude of the spacecraft acceleration, typically due to
the propulsion system, while t0 and tf are the initial and final time of space-
flight. This representation is popular in researches including thrust minimiza-
tion [100], [71]. Other forms of cost functions for acceleration are popular
in spacecraft trajectory optimization problems, specifically in shape-based
techniques [101]. The reason is that in these researches, the state vectors
are directly interpolated via polynomials with discretization [59]. So the ac-
celeration (similarly the thrust magnitude) will be achieved as a function of
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optimization variables. In such cases, the total velocity increment can be
calculated by integrating the norm of the acceleration vector as:

J = ∆v =
∫ tf

t0

√
γx2 + γy2 + γz2dt (36)

where γx, γy, γz are the components of overall acceleration of the spacecraft
within the transfer trajectory. Obviously, these components can be substi-
tuted by any coordinate system [102]. In some researches [103], acceleration
is sometimes represented by T/m as follows:

J =
∫ tf

t0

T

m
dt (37)

where T and m are the thrust magnitude and the mass of the spacecraft,
respectively. In this case, the maximum value or the integral of thrust mag-
nitude will be considered as the cost function. Eq. 36 along with Eq. 33
are both representations of velocity increment in discrete and continuous
domains, respectively. The type of the model and the approach determine
which one should be used in spacecraft trajectory optimization.

3.2.2. Fuel mass
Besides velocity increment and acceleration, sometimes fuel mass is con-

sidered as an alternative representation of energy. The study of fuel cost
function for spacecraft trajectories has been taken into consideration for a
long time [104]. One representation is as below.

J =
∫ tf

t0
mfdt (38)

where mf is the fuel mass of the spacecraft within the transfer trajectory.
If the transfer time and the mass decreasing rate is fixed, the fuel mass will
be independent of the transfer trajectory and can be calculated directly. In
such cases, the fuel mass takes the Mayer form simply as J = mf , as in [45].
Also, in some research the fuel mass itself is an input of the optimization
process which turns this variable into a known and fixed parameter in the
overall process.
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3.3. Other objectives
Besides the common objectives, sometimes additional costs are consid-

ered in some problems, depending on the approach or mission criteria. For
example, Luo and Tang [105] employed the following cost function in order
to prevent the solution from having a non-smooth trajectory:

J = 1
2

∫ tf

t0
[~x(t)]TQ[~x(t)]dt (39)

where Q is the state weighting coefficient. Employment of this cost function,
besides other familiar cost functions, overcomes the production of a non-
smooth or badly scaled trajectories.

Optimization of multi-spacecraft constellations problem by Li et al. [106]
is another example of employing a special cost function. Since the problem in
this research is formation flying, a very specific cost function including several
terms is considered. Objectives such as collision, path length, execution time,
fuel consumption and fuel distribution are considered simultaneously.

As another example in the multi gravity assist trajectory optimization
problem, the constraints on the minimum distance from the center of each
planet can be included in the objective function through appropriate penalty
terms [24]. Therefore, some modifications are applied to the objective func-
tion. Vasile and Locatelli [34] considered the following modification to the
typical cost function in that problem:

J = J0 +
n∑
i=1

wi max[ri − γi] (40)

where J0 is a typical cost function in the form of Eq. 33, wi are given penalty
parameter values and γi are the pericentre radius of planets in n stages of the
space mission. This form of objective function has also been used in [107].

3.4. Scalarization
As stated, objectives can also be categorized according to their number.

Single-purpose methods attempt to determine the solution taking into ac-
count a single criterion, whereas multi-purpose methods search for a trade-off
among several distinct criteria. Almost every advanced spacecraft trajectory
optimization problem involves multiple conflicting criteria and it is not pos-
sible to mathematically define a single optimal solution. However, a set of
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compromises called Pareto optimal solutions can be defined. In such prob-
lems, there is no unique solution that optimizes both objectives [2]. For
instance, in order to force the optimization to meet the boundary conditions
while searching the proper set of inputs for the maximization or minimiza-
tion of the given cost function, it is convenient to attempt to minimize an
augmented cost function. This process, better known as scalarization [108],
is the method which transforms the problem into a single-objective opti-
mization one involving possibly some parameters or additional constraints.
Separate terms in the cost function are given appropriate weights designat-
ing their relative importance in the optimization. This is perhaps the most
difficult part of designing the cost function. There are an infinite number
of weighting combinations if multiple terms are present. One representation
of using a weighting coefficient in a general form is presented in [109] as the
following:

J(~x, ~u, t) = h(~x(tf ), tf ) + α
∫ tf

t0
g(~x(t), ~u(t), t)dt (41)

where α denotes the relative importance of minimizing cost to terminal con-
ditions. The primary purpose of this weighting factor is to balance the cost
function such that the Mayer and Lagrange terms have the same relative
order of magnitude. It has been stated that for the impulsive cases where
the thrust time is small relative to the scenario time, it required a weighting
factor on the order of 10−2. For the continuous case the thrust time was
larger relative to the total scenario time requiring this weighting factor to
decrease to the order of 10−6 [109]. However, each scenario requires specific
manipulation of this variable in order to properly balance the cost function.

The rest of the methods in scalarization techniques are more practical
than Eq. 41. In these techniques, the Mayer and Lagrange terms in the
main equation are separated into several minor cost functions J1,J2,... Jp for
p number of minor cost functions. It allows the user to specify preferences,
which may be articulated in terms of goals or the relative importance of
different objectives [94]. Most of these methods incorporate parameters,
which are coefficients, exponents, constraint limits, etc, that can either be
set to reflect decision-maker preferences, or be continuously altered in an
effort to represent the complete Pareto optimal set. Some forms of modified
cost functions in spacecraft trajectory optimization problems are as follows:

J =
n∑
i=1

Ji (42)
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J =
n∑
i=1

αiJi (43)

J =
n∑
i=1

Ji
αi

(44)

J =
n∑
i=1

J2
i (45)

where in some of them each cost function is multiplied or divided by a weight-
ing coefficient. Some literature in which the spacecraft trajectory optimiza-
tion problems are solved employing these representations is provided in Table
5.

Scalarization Modified cost function References

Sum method J =
n∑
i=1

Ji [105] [107] [69] [72] [110]

Weighted sum method J =
n∑
i=1

αiJi [109] [58] [111] [112] [86]

Normalized method J =
n∑
i=1

Ji
αi

[113] [45]

Global criterion method J =
n∑
i=1

J2
i [114] [61]

Table 5: Scalarization techniques in spacecraft trajectory optimization

Choosing proper weighting coefficients in this form is a challenging issue
and has been tackled in different ways in various researches. For instance,
Bolle and Circi [113] tackled this problem by choosing the maximum propa-
gation time allowed in the simulation as the related coefficient for the time
cost function and manually tuning the other weighting coefficient (magnitude
of the error tolerance permitted during the mission design phase) in order to
make both cost functions behave in the same order. As such, extreme care
must be taken in properly balancing the relative weights in the cost function.
For fundamental background in the associated multi-objective optimization,
the reader should refer to Marler and Arora [93].
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4. Approach

Hitherto, the spacecraft dynamics and the objectives have been modeled
and properly defined for the spacecraft trajectory optimization problem. The
problem can now be introduced as a general representation as depicted in
Fig. 5. Details for the dimensions of variables are provided in [115]. The
next step in spacecraft trajectory optimization is to develop an approach
for finding the optimal trajectory. Since this step is a vast subject, only an
overview of approaches with a brief discussion is provided in this section. For
a fundamental background in the associated approaches, the reader should
refer to [10].
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Figure 5: Mathematical representation of a spacecraft trajectory optimization problem

While proceeding to the details in this section, the distinction between
the terms approaches, methods and techniques will be provided in order to
avoid misunderstanding. Each of these terms include a specific bunch of ideas
which are illustrated in the map of trajectory optimization approaches as in
Fig. 6 .

In general, two types of approaches exist: analytical approaches and nu-
merical approaches. Analytical approaches for the optimal trajectory result
in analytical solutions. They can only be obtained in special cases, for exam-
ple for very low-thrust orbit raising [116], and sometimes in the presence of
some perturbations [55]. Therefore, results from the analytical approach are
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Figure 6: Taxonomy of approaches in spacecraft trajectory optimization

seldom feasible for most of the spacecraft trajectory optimization problems
[2].

The majority of researches are dedicated to numerical approaches for
spacecraft trajectory optimization problems [2]. These approaches can be
divided in two well-known methods, called direct and indirect methods [10],
[117]. Through direct methods, the solution is found in an approximate way
based on the concept of parameterization on state variables ~x(t) and control
inputs ~u(t). The parameterization concept usually involves discretization
which concerns the process of transcription of the problem for transferring
continuous functions, models, and equations into discrete counterparts. Cer-
tainly, such methods allow a candidate solution to be found, but no warranty
is given about its optimality [10]. Indirect methods, on the other hand, use
the same techniques and concepts as in the direct method, but have the fea-
ture of relying on necessary, analytic conditions for optimality. This allows
the shifting of the optimization problem onto the determination of some pa-
rameters, known as the Lagrange multipliers, that should fulfill conditions
for optimality at the beginning and at the end of the process. These variables
are often defined as co-state, as they evolve along with the state vector. In
other words, the main difference between direct and indirect methods is the
involvement of co-state variables. The main issue related to indirect methods
is the impossibility of knowing the initial guess, permitting the meeting of
the boundary conditions. The search domain in such methods which is based
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on Pontryagin’s Principle [2], is made even more complex by the fact that
each Lagrange multiplier ranges in an unbounded set [10]. The connection
between these two methods has been a challenge and a matter of interest
within the community. The long lasting history regarding the bond of these
methods has resulted in the recent advance in trajectory optimization [118].
This connection is described with respect to the Covector Mapping Principle,
thanks to the efforts of Ross and Fahroo [119], [120], [121]. It describes the
relationship between the multipliers of the discretized optimization problems
and the co-states of the continuous optimal control problem.

Besides these two categories, sometimes dynamic programming is also
considered as the third branch of numerical methods (dashed line in Fig. 6)
in which the optimality criteria in continuous time is based on the Hamilton-
Jacobi-Belman partial differential equation. However, most research in liter-
ature only consider direct and indirect methods as the only two branches of
the numerical approaches [1], [2]. An overview of the approaches mentioned
along with their related methods, techniques and theories will be briefly dis-
cussed in this section.

4.1. Analytical approaches
Analytical approaches are the most desired ones since they usually pro-

vide solutions based on mathematical representations directly with zero ap-
proximation. However, they are not achievable most of the time due to the
complexity of the problem. Such kinds of complexities may be because of the
mathematical model or the objectives. The primary example of an analyti-
cal approach is the well-known Hohmann transfer for a simple orbit transfer
mission. According to the proposed terminology and taxonomy in this re-
view, Hohmann transfer is actually a very simple approach for transferring
the spacecraft from one orbit to another for velocity increment minimization.

As for the analytical approach in a continuous domain, generally the pro-
cess of achieving the optimal solution involves optimal control theory and
relies on Pontryagin’s Principle. The first step is establishing the problem
in mathematical representation. This consists of determining the equations
of motion, cost function, and applicable constraints. Constraints can be
broken down into two primary types: path constraints and boundary con-
straints [122]. Path constraints represent restrictions on either the control
or state at any time. For instance, engines have a finite amount of thrust
yielding a maximum value for the control. It would be meaningless to look
for a solution that requires a thrust more than the maximum available limit.
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Boundary constraints pertain to either the final or initial states. They may
be given as a set of equality or inequality constraints. A state vector that
does not violate any constraint is referred to as an admissible trajectory.
Similarly, a control vector that does not violate any constraint is referred
to as an admissible control. Then, the cost function is formed, augmented
with Lagrange multipliers (or co-states) associated with the constraints and
state differential equations of the system. Defining a convenient Hamilto-
nian, the first variation of the cost function due to differential changes in the
control inputs is written. Next, co-state differential equations and boundary
conditions are chosen to simplify this expression. This process of writing a
problem in terms of the original variables and Lagrange multipliers (or states
and co-states) is often referred to as dualization which makes the problem
difficult to solve analytically. Such difficulties are well described by Ross
[11]. However, this analytical approach is very useful as a sanity check for
the numerical approaches.

As is shown in many references [10], [11], the number of Lagrange multi-
pliers equals that of the state vector components. This means that even in
the simplest case by considering the spacecraft as a material point, thus ig-
noring the attitude equations, the optimal set of Lagrange parameters could
potentially be searched in R7 (six entries for the spatial coordinates plus one
for the spacecraft mass). If even the initial epoch of the transfer is to be
determined, the optimal set of parameters must be searched in R8.

Notable researches are dedicated to analytical approaches in spacecraft
trajectory optimization. For example, Fernandez [123] developed a complete
first-order analytical approach for the problem of optimal low-thrust limited-
power transfers in an inverse-square force field between coplanar orbits with
small eccentricities. The presented approach eliminates the singularity for
circular orbits and can be applied for time-fixed transfers between coplanar
orbits with small eccentricities.

4.2. Numerical approaches
By increasing the complexity of the model and the problem, the analytical

approaches fade and numerical approaches become more favorable. A few of
the popular methods in numerical approaches are discussed here, following
the surveys [1] and [2].

4.2.1. Direct and indirect methods
The overall schema of numerical approaches is depicted in Fig. 7.
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Figure 7: Methods and techniques in numerical approaches

Two distinct branches of numerical approaches have arisen. Both branches
attempt to minimize cost functions and constraint violations using discrete
approximations [124]. This is performed by some gradient-based or meta-
heuristics which will be discussed in the next section. The first branch is
that of direct methods which transcribe the continuous optimal control prob-
lem into an optimization problem [9] considering states and control vectors.
Satisfaction of the system equations is accomplished by integrating them
stepwise using either implicit or explicit rules; in either case, the effect is
to generate nonlinear constraint equations which must be satisfied by the
parameters, which are the discrete representations of the state and control
time histories. The problem is thus converted into a nonlinear program-
ming problem [125]. Although direct methods are less accurate than indirect
methods, the fact that they are easier to implement, have a larger domain
of convergence, and have reduced problem size make them very attractive.
One type of direct methods is the one when only the state variables are
interpolated and control variables are considered in the objective function.
Then a gradient-based technique or metaheuristic is employed to minimize
the cost by changing the values of state variables. This method is some-
times referred to as the shape-based method, since it pertains to the shape
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of the state variables. Fourier series are very popular in this kind of method,
specifically when applied to low-thrust trajectory optimization [47], [101],
[71],[126]. The trajectory determined by the shape-based methods satisfies
the equation of motion, boundary conditions, and even the constraint on the
thrust acceleration. In addition, the solution of the shape-based methods can
be shown to serve as a good initial guess for other approaches or methods.
The resulting approach is very popular since it can be used in spacecraft
trajectory optimization problems considering constraints or any other type
of limitations. They have advantage as they can be easily manipulated for
overcoming drawbacks of other methods. For instance, Xie et. al [48] used
the shape-based approach in providing a new combination of the elevation-
angle and radius shapes for the 3-D low-thrust trajectories using the initial
orbital plane as the reference plane. This new shape combination avoids the
two drawbacks of the spherical shaping method, including large out-of-plane
motion and range control of state angle variation.

The second branch is that of indirect methods. An indirect method con-
siders the dualized form of the equations including states and co-states within
the time discretization. That is, the states and co-states are both considered
within the discretization. While indirect methods typically enjoy greater
accuracy than direct methods, three major problems arise. Firstly, the an-
alytical forms of the necessary conditions must be expressed, including the
co-state differential equations, the Hamiltonian, the optimality condition,
and transversality conditions. Numerically speaking, this also makes the
problem size large due to discretization of the co-states. Secondly, the ana-
lyst must guess certain aspects of the solution, such as the portions of the
time domain containing constrained or unconstrained control arcs. Finally,
this method also requires initial guesses for the co-states which decreases the
domain of the convergence [9].

Previously mentioned, the very rarely considered branch is the dynamic
programming method, which is seldom considered as a separate subdivision
of numerical approaches. The basic idea is to subdivide the problem to be
solved in a number of stages. Each stage is associated with one subprob-
lem, and the subproblems are linked together by a recurrence relation. The
solution of the whole problem is thus obtained by solving the subproblems
using recursive computations. For a more detailed insight in dynamic pro-
gramming, the reader is referred to [127]. Dynamic programming has been
extensively applied with success to discrete problems. Unfortunately, its ap-
plication is severely restricted in the case of continuous state systems because
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of the curse of dimensionality; a term coined by Bellman to describe the
problem caused by the exponential increase in the size of the state space [8].
Therefore, dynamic programming has not been successfully used in space-
craft trajectory problem with a large number of variables. Other methods,
such as direct or indirect methods, must be employed. It should also be
noted that regardless of whether a direct or indirect method is chosen, the
states must be integrated from some boundary condition or the equations of
motion must be enforced through constraints.

Both of the aforementioned direct and indirect methods aim at a high-
fidelity solution, but may be time consuming for evaluating thousands of
trajectories in the preliminary phase of the mission design. There have been
various efforts and routes taken in overcoming the difficulties associated with
the design of optimal spacecraft trajectories, for instance, by resorting to
heuristics.

4.2.2. Numerical techniques
Hitherto, two different methods have been introduced within the category

of numerical approaches. In this subsection, some numerical techniques will
be briefly introduced which can be used in direct and indirect methods.

Differential inclusions
One strictly direct technique is that of differential inclusions. The dif-

ferential inclusions enforce the equations of motion at each discrete time by
applying inequality constraints on the state derivatives [128]. These inequal-
ity constraints are obtained by substituting the upper and lower bounds on
the control vector into the equations of motion. When the inequality con-
straints are met, the states at one node are said to lie in the attainable set
at that node, given the state values at an adjacent node and the set of ad-
missible controls. The advantage given by differential inclusions is that it
effectively eliminates the explicit dependence on control values at each node.
However, techniques such as this can become numerically unstable and the
formulation can be problem dependent [1].

Shooting methods
The shooting method is a well-known iterative technique to calculate

the state histories given the control histories of the system. Most successful
shooting applications have one salient feature in common, namely, the ability
to describe the problem in terms of a relatively small number of optimization
variables. One example is [96], where the direct shooting method is employed
with an evolutionary algorithm to solve the minimum-time orbit transfers of
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solar sail spacecraft for Mercury sample return missions.
Shooting methods can be divided into two types including shooting method

and multiple-shooting method. The direct shooting method is a control pa-
rameterization method where the control is parameterized using a specified
functional form, e.g.,

u(t) ≈
m∑
i=1

aiψi(t) (46)

where ψi(t)(i = 1, ...,m) are known functions and ai(i = 1, ...,m) are the
parameters to be determined from the optimization. The dynamics are then
satisfied by integrating the differential equations using a time-marching al-
gorithm. Next, the cost function is determined using a quadrature approx-
imation that is consistent with the numerical integrator used to solve the
differential equations. The nonlinear programming problem that arises from
direct shooting minimizes the cost subject to any path and interior-point
constraints.

An extension of shooting the method is the multiple-shooting method. In
a multiple-shooting method, the time interval [t0, tf ] is divided into M + 1
subintervals. The aforementioned direct shooting method is then used over
each subinterval [ti, ti+1] with the values of the state at the beginning of
each subinterval and the unknown coefficients in the control parameterization
being unknowns in the optimization. In order to enforce continuity, the
following conditions are enforced at the interface of each subinterval:

x(t−i ) = x(t+i ) (47)

These continuity conditions result in vector root-finding problem, where
it is desired to drive the values of the difference between x(t−i )−x(t+i ) to zero.
It can be seen that the direct multiple-shooting method increases the size of
the optimization problem because the values of the state at the beginning
of each subinterval are variables to optimize. This technique can also be
applied in indirect approaches as well, where the co-states are also taken into
account during discretization. The idea of the multiple-shooting method for
both direct and indirect approaches is shown in Fig. 8.

Despite the increased size of the problem due to these extra variables, the
direct multiple-shooting method is an improvement over the standard direct
shooting method. The sensitivity to errors in the unknown initial conditions
is reduced since the integration is performed over significantly smaller time
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Figure 8: Diagram of direct and indirect multiple-shooting methods

intervals. Shooting methods are attractive because the equations of motion
are enforced automatically by the marching integration. This effectively re-
duces the size of the problem by reducing the number of constraints that must
be applied compared with collocation techniques which will be discussed in
what follows [129].

Collocation
Collocation techniques enforce the equations of motion through quadra-

ture rules or interpolation. See [130] as a typical example. An interpolating
function (interpolant) is solved such that it passes through the state values
and maintains the state derivatives at the nodes spanning one interval (or
subinterval) of time. The interpolant is then evaluated at points between the
nodes, called collocation points. At each collocation point, an equality con-
straint is formed, equating the interpolant derivative to the state derivative
function, thus ensuring that the equations of motion hold (approximately)
true across the entire interval of time. This technique, sometimes referred
to transcription method [9] is based on a trajectory discretization by small
segments and on a near-uniform discrete approximation of thrust directions
by a set of thrust profiles with an inequality constraint for each segment.
The problem in this case can be stated as to minimize the total character-
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istic velocity with terminal conditions. The overall scheme of this process is
depicted in Fig. 9.
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Figure 9: Transcription technique process

In fact, the technique can be considered as a sequential nonlinear pro-
gramming algorithm. This process has three fundamental steps. The first
step is to convert the dynamic system into a problem with a finite set of
variables. The second step is solving the finite-dimensional problem using a
parameter optimization method (i.e., the nonlinear programming subprob-
lem). Finally, the third step is to assess the accuracy of the finite-dimensional
approximation and, if necessary, repeat the transcription and optimization
steps. Actually this technique is a process including an approach (discretiza-
tion), a solution (NLP) and a minor technique (refinement). Details about
these steps are provided in [9].

In this technique, one fundamental step is to discretize the spacecraft tra-
jectory as depicted in Fig. 10. According to Fig. 10, trajectory discretization
refers to a process which can be clearly seen as a multi-phase optimization
problem. In this process, the trajectory is broken up into a finite number of
legs and segments. The stage cost and constraints are generally expressed
in terms of thrust magnitude and any violation from the maximum value.
Transition functions can be obtained from the integration of the spaceflight
equations of motion. The schematic representation of the corresponding tra-
jectory structure is depicted in Fig. 11.

Once the states have been discretized and fitted with a polynomial, they
are differentiated and then compared to the defined state derivatives at the
collocation points. The difference is referred to as the defect. The defect is
minimized in order to satisfy the specified equations of motion. This concept

36



 

)(tx

)(tu

Nuuu ,...,, 21

Nxxx ,...,, 21

State variables 

Control variables 

NLP variables 

NLP variables 

),,( tuxfx 

)(
2

11   kk
k

kk ff
h

xx

State equations 

Deflect constraints 

Figure 10: Discrete versus continuous trajectory concepts

is the main notion in a class of techniques called Pseudospectral methods.
Pseudospectral methods represent a class of direct methods that use colloca-
tion to solve optimal control problems numerically rather than analytically.
This technique has become increasingly popular over the past several decades.
In a pseudo-spectral method, the collocation points are chosen based on ac-
curate quadrature rules and the basic functions are typically Chebyshev or
Lagrange polynomials. They are generally known to converge spectrally as
mentioned in [131]. In these methods, the discretization is accomplished by
the use of global polynomials at collocation points. There are many sets that
are commonly used in pseudospectral methods such as Legendre-Gauss (LG),
Legendre-Gauss-Radau (LGR), Legendre-Gauss-Lobatto (LGL), Chebyshev-
Gauss-Lobatto (CGL) and Hermite-Legendre-Gauss-Lobatto (HLGL). Al-
though some researchers prefer the term orthogonal collocation, the terms
pseudospectral and orthogonal collocation have the same meaning [132]. The
reader is referred to [133, 134, 135, 136, 137, 138, 139, 140] and references
therein for recent and comprehensive reviews of pseudospectal methods along
with their applications in trajectory optimization problems.

Needless to say, each method may be more appropriate under certain
conditions. The accuracy of such discretizations has been compared in [99].
However, the accuracies of individual methods are not rigorously examined
in this survey since the main focus is not on the collocation method itself.
While space precludes a more detailed discussion of collocation methods, the
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Figure 11: Spacecraft trajectory discretization

interested reader should consult the survey by Topputo and Zhang [141].

4.3. Summary
The approaches for spacecraft trajectory optimization problems are nu-

merous and the current section is just a brief overview of current trends. As
proposed in this section, when describing an approach for solving spacecraft
trajectory optimization problems, it can be either analytical or numerical. It
is possible to employ analytical approaches for specific space missions by a
simpler process than the procedure identified in optimal control theory. One
process is semi-analytic, which is often employed in academic-strength prob-
lems. They usually use clever coordinate transformations and other tricks
to avoid relying on Pontryagin’s Principle or mitigate the complexity of op-
timal control theory. While such ad hoc techniques are indeed useful and
important for the analysis of specific problems, they are not portable to the
broader spacecraft trajectory optimization problems. When turning into nu-
merical approaches, a method is often classified as either a direct method
or an indirect method. As stated, the direct methods transform the space-
craft trajectory optimization problem to large-scale problems that require a
high number of iterative computations. It constructs a sequence of points
such that the objective function is minimized. In an indirect method, the
process is also the same. However, it attempts to find a root of the neces-
sary condition based on Pontryagin’s Principle. It means it focuses on the
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adjoint variables in addition to state and control variables. Contrary to pop-
ular belief, Pontryagin’s Principle itself is not an approach for achieving the
solution. It is a problem generator which maps the optimal control problem
to a boundary value problem by lifting it to a dual space [11].

It is also important to emphasize that there is no restriction with the
method used to solve the problem and the techniques. For example, with the
exception of the differential inclusion, one may consider applying a shooting
or multiple-shooting technique to either an indirect or a direct method (notice
the dashed lines in Fig. 7). The difference within the process for the shooting
method is depicted in Fig. 12. Similarly, collocation techniques can be used
not only in direct methods but also in indirect methods as well, with respect
to the Covector Mapping Principle. The reader is urged to consult the works
of Huntington et al. [99] for additional information. It should also be noted
that the Covector Mapping Principle is satisfied by not only pseudospectral
methods but also by Runge-Kutta methods. See [142] as an example in this
regard.

When using an indirect approach, the user must compute the quantities
of the Hamiltonian function. Unfortunately, this operation requires the user
to have at least some knowledge of optimal control theory. Furthermore,
even if the user is familiar with the requisite theoretical background, it may
be very difficult to construct these expressions for complicated black box
applications.

The major drawback for the indirect approach is the robustness. One
difficulty is that the user must guess values for the adjoint variables, which
is very non-intuitive since they are not physical quantities. Even with a rea-
sonable guess for the adjoint variables, the numerical solution of the adjoint
equations can be very ill-conditioned.

As for the direct method, more flexibility can be gained in finding the so-
lution. Since the adjoint equations are not formed explicitly, analytic deriva-
tives are not required. Instead, equivalent information can be computed
using sparse finite differences. Consequently, a user with minimal knowl-
edge of optimal control theory can use the method. The method is flexible
and new formulations are handled readily. Path inequalities do not require
an a priori estimate of the constrained-arc sequence because the active set
procedure automatically determines the arc sequence. The method is very
robust since the user must guess only the problem variables. Furthermore,
the globalization strategy, which is designed to improve a merit function,
has a much larger region of convergence than finding a root of the gradient

39



Indirect Direct 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START 

Inputs 
Initial guess of 

parameters in control 
parameterization 

Initial guess of 
unknown initial 

conditions 

Integrate Trajectory 
from t0 to tf 

Compute Error in 
Terminal Conditions 

Update 
Driving cost to lower 

value 
Updating unknown 

initial conditions 

Evaluate 

END 

Cost is acceptable 
minimum and 
constraints are 

satisfied? 

Error in terminal 
conditions is smaller 

than specified 
tolerance? 

YES YES 

NO NO 

Figure 12: Algorithm for direct and indirect shooting methods

of the Lagrangian, which is the approach used by an indirect method. To
sum up, for most applications, the direct method is quite powerful and elim-
inates the deficiencies of an indirect approach. Indeed, it is often tempting
to use a direct method simply because it is more easily implemented and un-
derstood. Nevertheless, there may be some situations that are problematic
in direct strategies, such as singular arcs and discontinuous control. Arti-
cles dedicated to direct and indirect methods in different space missions are
tabulated in Table 6.

The approach is the most important element of the four steps mentioned
in the main process of solving a spacecraft trajectory optimization problem.
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Mission Direct method Indirect method

Typical [143] [144] [145] [41] [126]
[48] [105] [141] [109] [64] [99] [69] [146] [147] [148] [79] [149]

Interplanetary [150] [151] [47] [152] [101]
[71] [45] [96] [107] [153] [154] [70] [51] [100] [62] [63] [65]

Libration [59] [155] [57] [156] [89] [157] [158] [159]

Rendezvous [160] [161] [75] [67] [162] [77] [163] [164]

Other [137] [139] [98] [165] [166] [19]

Table 6: Numerical approaches in spacecraft trajectory optimization

The choice between the approaches vastly depends on what type of problem is
being faced and what solution is actually expected. One good example which
shows this dependency is the concept of on-line and off-line implementation of
an approach [167]. The first kind of concept assigns maximum priority to the
speed of convergence, maybe to the detriment of the accuracy or optimality
itself. An example is provided by rendezvous with a moving target or docking
maneuvers in which a real-time calculation of the approaching trajectory is
often required [160]. As for the latter category, alternatively, the time for
convergence is not as important as the optimality of the solution. An example
is the long-time scheduling of a space mission involving multiple fly-bys [168].

5. Solution

The final step of the spacecraft trajectory optimization process consists
of achieving the solution based on the approach developed in the previous
section, either analytical or numerical. In Fig. 13, a hierarchy of algorithms
used in the literature for spacecraft trajectory optimization is presented which
will be used as a scheme in the rest of the section.

If the analytical approach is developed in the previous step, the exact solu-
tion will be achieved. In the case of simple spacecraft trajectory optimization
problems and sometimes very specific space missions, researchers usually use
exact methods. Once again, the simplest example is solving the problem of
impulsive orbit which arises with Hohmann transfer approach [15]. This an-
alytical approach clearly ends in an exact solution directly. When a problem
is solved analytically, it usually does not involve any iteration. There is no
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Figure 13: Taxonomy of solutions in spacecraft trajectory optimization

need to use any special numerical technique or iterative procedure to achieve
the solution if the approach is truly analytical. As mentioned in the previous
section, such cases are very rare in spacecraft trajectory optimization. Some
of them are provided in Table 7.

On the contrary, when spacecraft trajectory optimization problems be-
come too complex for exact methods, numerical algorithms, heuristics and,
in particular, metaheuristics are often used. In such cases, the problem is
considered as a black-box which can be tackled with computational tech-
niques and algorithms. Moreover, the problem imposes less restrictions to
the application of different algorithms in this way.
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Mission Author(s) Reference Description
Typical transfer da Silva et al. [123] A complete first-order analytical solution,

which includes the short periodic terms
in an inverse-square force field, between
coplanar orbits with small eccentricities is
presented.

Interplanetary Quarta and Mengali [116] A semi-analytical method is proposed for
the analysis of minimum-time solar sail
heliocentric orbit raising. A closed-form
estimation of the minimum flight time
is presented under the assumption that
the sail characteristic acceleration is suf-
ficiently small.

Typical transfer Mengali and Quarta [169] An analytical approach is developed for
the classical problem of escape from ellip-
tical orbit using a constant radial thrust.
The method is based on graphical rep-
resentations, dedicated to the spacecraft
equipped with low-thrust propulsion sys-
tems.

Rendezvous Yang and Cao [81] The trajectory optimization problem for
autonomous rendezvous of spacecraft with
limited thrust is tackled. Based on the
Lyapunov stability theory, the rendezvous
problem is transformed into an anasymp-
totic stabilization problem of the switch-
ing system.

Rendezvous Ma et al. [84] An analytical state-feedback controller de-
sign algorithm is presented for trajectory-
tracking of circular-orbit rendezvous, con-
sidering actuator failures and exogenous
disturbances.

Typical transfer Roa et al. [66] A novel fully analytic approach based on
logarithmic spirals for spacecraft trajec-
tory optimization in typical orbit transfer
problems is presented.

Table 7: Solutions for analytical approaches in spacecraft trajectory optimization

5.1. Nonlinear Programming
Of the few types of computational techniques commonly used to solve

trajectory optimization problems, gradient based methods such as nonlin-
ear programming seems to be the most popular. Over the past decades,
nonlinear programming (NLP) has become an indispensable tool for the op-
timization of space trajectories. These tools are now applied at research and
process development stages, in the design stage, and in the online operation
of these processes. More recently, the scope of these applications is being
extended to cover more challenging, large-scale tasks. The ability to solve
large-scale problems cheaply, even online, is aided by recent breakthroughs
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in NLP. They include the development of modern barrier methods, deeper
understanding of line search and trust region strategies to aid global conver-
gence, efficient exploitation of second derivatives in algorithmic development,
and the availability of recently developed and widely used NLP codes.

Since NLP uses gradient information, it is often capable of relatively quick
convergence and very accurate results (within the accuracy of the discretiza-
tion). They also have well-defined convergence criteria. This has led to their
popularity and the development of many individual software packages. A
vast number of NLP solvers has been developed since 1970. Some of them
are SNOPT [170], DONLP2 [171], filterSQP [172], rSQP++ [173] and KNI-
TRO [174] which has been developed since the late 1990s until the mid 2000s.
Another available package is the function fmincon() of MATLAB optimiza-
tion toolbox. Developed in 2009, it is a general, multi-purpose constrained
parameter optimizer for small, medium, and large spacecraft trajectory op-
timization problems [101]. Table 8 shows some of the researches in which
the fmincon() function is used as the optimizer for spacecraft trajectory opti-
mization in different space missions regarding direct and indirect approaches.
The existence of various NLP solvers has led to a number of implementations

Mission References
Libration Points [175] [158]
Interplanetary [16] [151] [101] [41] [126] [107] [78] [65]

Reentry and others [176] [177] [178] [179]
Rendezvous [48] [78] [82] [180] [86]

Typical transfer [41] [126] [48] [141]

Table 8: Application of MATLAB fmincon() in spacecraft trajectory optimization

and very reliable and efficient software packages for large-scale nonlinear pro-
gramming. Certainly, one of the most recent and useful platforms for NLP
is that of the NEOS Server [181]. This server provides state-of-the-art soft-
ware free of charge to solve optimization problems. Other platforms such as
AIMMS [182], AMPL [183], and GAMS [184] have also made the formulation
and solution of optimization accessible to a much wider user base.

These NLP algorithms and associated solvers discussed in this section
comprise only a sampling of representative codes, based on Newton-type
methods. A complete listing is beyond the scope of this survey and the
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reader is referred to the NEOS software guide [181] for a more complete
selection and description of NLP codes. Moreover, important issues such as
scaling and numerical implementations to improve precision have not been
covered here. Readers are referred to [185] for more information on NLPs.

The most noticeable problem with gradient based methods is that they
require an initial guess of all the parameters of the system. Since all nodal
state and control values are parameterized, the analyst must have some a
priori knowledge of the optimal trajectory. The consequences of poor initial
guessing are usually failure to converge or convergence upon a non-global
optimum solution in the cost function.

Having the initial guess for the gradient-based method is a challenging is-
sue in spacecraft trajectory optimization. A method to address this issue was
first proposed in 1995 [186], which leads to the presentation of metaheuris-
tics, an alternative way to solve the discrete direct or indirect trajectory
optimization formulations.

5.2. Metaheuristics
In recent years, there have been significant advances in the use of meta-

heuristics to approximate solutions of spacecraft trajectory optimization prob-
lems. A metaheuristic is an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently produce high-quality
solutions [187]. It may manipulate a complete (or incomplete) single set-
tlement or a collection of settlements in every iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method. The family of metaheuristics includes, but
is not limited to, genetic algorithms, particle swarm optimization, simulated
annealing, and their hybridizations.

Metaheuristics provide decision-making managers with robust tools that
obtain high-quality solutions, in reasonable time horizons, to important ap-
plications specifically in aerospace optimization problems. The well-known
survey by Blum and Roli [188] divides metaheuristics into two main cate-
gories including single solution algorithms and population based algorithms.
The first category, also referred to trajectory-based algorithms, gathers lo-
cal search, greedy heuristic, simulated annealing, tabu search, iterated local
search, etc [187]. The second category, which is more practical in spacecraft
trajectory optimization, regroups evolutionary algorithms such as genetic al-
gorithms [189], evolution strategies [190], genetic programming [191], particle
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swarm optimization [192], etc. Survey by Xiong [193] also confirms this tax-
onomy with a slight difference in which the single solution algorithms are
separated into two categories called trajectory based and multi-trajectory
based algorithms. Other taxonomies exist as well that try to put algorithms
in different groups [194], [195].

Among metaheuristics, evolutionary algorithms are particularly suited for
most of the spacecraft trajectory optimization problems. A Generic diagram
for most of the algorithms in this group is presented in Fig. 14. 
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Figure 14: Generic flowchart of evolutionary algorithms

The most recurrent instances in EAs group are Genetic Algorithms (GAs)
which have been used in many papers. Besides GAs, Differential Evolution
(DE), has also been used frequently in the solution of spacecraft trajectory
optimization. In these algorithms, the information about the structure of
the problem can be incorporated in order to improve the efficiency of the
algorithms.

The performance of different algorithms on different benchmark problems
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are compared in some researches. The tested algorithms in these studies in-
clude, besides GA and DE, EAs such as Particle Swarm Optimization (PSO),
Ant colony optimization (ACO) and also local search algorithms such as Sim-
ulated Annealing (SA). As a summarization, Table 9 contains references of
the most used EAs in spacecraft trajectory optimization problems.

Model Mission GA PSO DE

Impulsive

Rendezvous [196] [197] [19] [196] [198] [196]

Typical transfer [22] [24] [25] [26] [110] [23] [24] [25] [112] [199] [25]

Interplanetary [200] [201] [202] -

Gravity assist [24] [25] [30] [31] [32]
[34] [35] [36] [196]

[24] [25] [31] [34] [35]
[28] [196] [203]

[25] [31] [34] [35] [33]
[196] [203]

Continuous

Rendezvous [204] [156] [75] [86] [164] -

Typical transfer [69] [114] [205] [146] [147]
[112] [69] [146] -

Interplanetary [45] [200] [107] [206] [207] [61] [208] [62] [112] -
Libration points [209] [210] [85] [58] [112] [87] [72] [211]

Others [106] [98] [165] -

Table 9: Evolutionary algorithms in spacecraft trajectory optimization

It can be highlighted that GAs are the first choice for most of the space-
craft trajectory optimization problems, perhaps due to their availability and
ease of use. However, it is difficult to know the particular variant used (codifi-
cation, operators, etc.) from the contents of the papers. Another observation
regarding the literature confirms the fact that metaheuristics are more used
in problems based on impulsive models rather than continuous models. To
be more specific, gravity assist missions are the problems which are tackled
mostly by evolutionary algorithms. Table 10 provides some of the research
in which the other metaheuristics instead of GA, PSO and DE, are employed
in spacecraft trajectory optimization.

According to the literature, researchers tend to use EAs more than trajectory-
based algorithms. However, the EAs have drawbacks which, to some au-
thors, make it unacceptable as a primary means of trajectory optimization
[1]. Firstly, as the algorithm is probabilistic, the difference in the output
solution in different runs can be high. Second, there are no well-defined con-
vergence criteria (i.e., no necessary and sufficient conditions), such as those
used in NLP algorithms.
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Model Mission Metaheuristic Reference
Impulsive Rendezvous Simulated Annealing [19]
Impulsive Gravity assist Multiple Trajectory Search [24]
Impulsive Typical transfer Monotonic Basin Hopping [25]
Impulsive Gravity assist A Novel Global Optimization Algorithm [29]
Impulsive Gravity assist Improved Ant Colony Optimization [32]
Impulsive Gravity assist Basic Best Start Algorithm [34]

Continuous Typical transfer Imperialist Competitive Algorithm [69]
Continuous Interplanetary Improved Imperialist Competitive Algorithm [96]
Continuous Reentry A Pigeon Inspired Algorithm [97]
Continuous Rendezvous Interval Algorithm [156]
Impulsive Rendezvous Simulated Annealing [197]
Impulsive Interplanetary Monotonic Basin Hopping [206]

Continuous Rendezvous Simulated Annealing [212]
Continuous Typical transfer Imperialist Competitive Algorithm [213]
Continuous Typical transfer Estimation of Distribution Algorithms [214]
Continuous Interplaanetary Evolutionary Neurocontrol [215]

Table 10: Other metaheuristics in spacecraft trajectory optimization

It should also be highlighted that metaheuristics has been used not only
for spacecraft trajectory optimization, but also for space orbit design prob-
lems as well. A typical example is the use of EAs for minimizing the average
revisit time of a space mission over a particular target site during the specified
days [216].

5.3. Hybrid algorithms
In recent years, many works have relied on cooperative (or hybrid) opti-

mization techniques. In many cases, the best results are obtained with this
kind of techniques, especially in real-life problems. At the beginning, cooper-
ation was mainly carried out between several metaheuristics. But nowadays,
more and more cooperation schemes between metaheuristics and exact ap-
proaches are proposed. These strategies usually give good results because
they are able to exploit simultaneously the advantages of several types of
algorithms or methods. For example, it may allow giving quality guarantees
to the identified solutions or may reduce the sensitivity to the initial guess.

The first attempt, in 1995 [186], was intended to be a solution of the
multi-point boundary value problem (MPBVP) for systems with Mayer cost
functions, and linearly appearing controls. The final numerical solution of the
optimality conditions was initialized using guesses for the switching times,
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Space Mission Author(s) Reference Description
Rendezvous Luo et al. [17] A two step hybrid algorithm based on GA

and SQP is proposed.
Typical transfer Shafieenejad et al. [69] A GA-PSO hybrid algorithm is employed

in a low-thrust transfer within an indirect
method.

Gravity assist Vasile and Zuiani [24] A hybrid algorithm called MACS is pro-
posed based on a number of heuristics to
combine local and global search. The al-
gorithm outperforms NSGA II and other
metaheuristics in different space missions.

Gravity assist Izzo et al. [69] A technique called GASP is proposed
which creates intelligent initial individuals
according to multi gravity assist mission
when hybridized with other metaheuris-
tics such as GA, PSO and DE.

Rendezvous Luo et al. [18] A two step algorithm called GASM is pro-
posed in which the GA serves a starter
engine and the SM (Simplex Method) can
then refine to pinpoint the minimum pa-
rameter solution with fine resolution.

Gravity assist Vasile and Locatelli [34] A hybrid algorithm is proposed which
is based on domain decomposition and
stochastic multiagent search technique.

Gravity assist Englander et al. [35] A hybrid algorithm based on GA, PSO
and DE is proposed for mission plan-
ning. In this combinatorial-continuous ap-
proach, GA is used to find the optimal se-
quence of planets while cooperative PSO-
DE is used for trajectory optimization of
the selected sequence of planets.

Gravity assist Vasile et al. [33] A robust algorithm based on a hybridiza-
tion of DE and the logic behind MBH
(Monotonic Basin Hopping) is proposed.
The algorithm outperforms DE on some
difficult space trajectory design problems.

Interplanetary Vavrina and Howell [150] An algorithm is developed through the
hybridization of GA and GALLOP (a
gradient-based direct method).

Rendezvous Sentinella and Casalino [196] A hybrid evolutionary algorithm which
synergistically exploits DE, GA and PSO,
has been developed. The cooperative pro-
cedure runs the three basic algorithms in
parallel, while letting the best individuals
migrate to the other populations at pre-
scribed intervals.

Typical transfer Shirazi [217] A hybrid metaheuristic based on GA and
SA is employed. The algorithm outper-
forms typical GA and SA.

Libration points Lei et al. [88] A hybridization of PSO with DE is devel-
oped. The algorithm has advantages over
basic algorithms which suffer from slow
convergence and loosing exploitation ca-
pability.

Rendezvous Ma and Xu [156] An interval algorithm (IA) combining
the gradient-based optimization method is
presented for space rendezvous problem.

Table 11: Hybrid algorithms in spacecraft trajectory optimization
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generated by examining the results of an NLP shooting technique initialized,
in turn, by a shooting technique incorporated with GA. The solved problem
was the reorientation of an inertially symmetric spacecraft. Other authors,
such as those of [218], have opted to concentrate on modifying the compo-
nents of the GA to improve the performance. Though the goal of that work
was to improve the GA components themselves, the framework is relevant
because it allows a more general representation of the control history in a
direct shooting technique with a GA while using the result to initialize the
NLP solution of a direct collocation method.

In the literature, for example [33] and [24], it is also demonstrated that a
hybridization between global optimization techniques, generally applicable to
black-box problems, with ad hoc branch-and-prune methods and exploiting
the properties of the problem (e.g., continuity and differentiability, period-
icity, symmetry, modularity) can greatly improve convergence, specifically
when applied to spacecraft trajectory design. Hybridization may also refer
to switching between global and local minimizers in an optimization algo-
rithm in some researches [24], [29], [34]. However, it does not only refer to
the algorithms. It sometimes refers to the approaches. For example, taking
advantage of both direct and indirect approach features in solving a trajec-
tory optimization problem in a space mission is sometimes called a hybrid
technique [113], [50]. Some examples regarding the hybrid algorithms applied
in spacecraft trajectory optimization are provided in Table 11.

Analyses regarding the effectiveness of the hybrid algorithms are encour-
aging as, for the same computational effort (measured in number of function
evaluations), hybrid algorithms were converging more accurately than com-
mon algorithms in many cases.

6. Summary and discussion

This review tried to provide a complete taxonomy of concepts within
spacecraft trajectory optimization. This section provides the overall discus-
sion regarding spacecraft trajectory optimization based on the literature re-
ferred to in this review along with some issues in this field. Moreover, future
trends and useful considerations regarding the upcoming ideas in spacecraft
trajectory optimization are put forward.
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6.1. Highlights
By having an overview of the literature, several points can be highlighted.

They include the relation between direct and indirect methods, metaheuris-
tics and computational issues in spacecraft trajectory optimization which will
be discussed briefly in this subsection.

The two branches of direct and indirect methods play an important role
in categorizing the approaches. These two different philosophies have led
to a dichotomy in the space community. Researchers who focus on indirect
methods are principally interested in differential equation theory, while re-
searchers who focus on direct methods are more interested in optimization
techniques. While seemingly unrelated, there are a lot of common character-
istics between these two methods. Specifically, as discussed in this review,
in recent years researchers have delved quite deeply into the connections
between the direct and indirect methods. They have discovered that the
optimality conditions from many direct methods have a well-defined mean-
ingful relationship. Thus, these two classes of methods are merging as time
goes by. Covector Mapping Principle is actually the connectivity that fills
the gap between these two branches [11]. It renders the terms direct and in-
direct obsolete in the modern viewpoint of spacecraft trajectory optimization
and reveals that the obvious and shorter path of dualization first and com-
puting afterward is strewn with difficulties while a longer path of reversing
the operations eliminates the curse of sensitivity.

Regarding metaheursitics, the key point is selecting an algorithm intel-
ligently for spacecraft trajectory optimization. The question remains unan-
swered about which algorithm is appropriate for a specific class of trajectory
optimization problems. One reason is the definition of a good algorithm,
which is different from paper to paper. Ideally, a good algorithm is capable
of solving most of the instances of a given spacecraft trajectory optimization
problem faster than a bad algorithm regardless of the method (direct or in-
direct) in an acceptable range of accuracy. Typically computer time is used
to measure algorithm speed; however, when this is done it is imperative that
all testing be done using the same hardware, compiler options, and operat-
ing system. The number of function evaluations can be used instead of (or
in addition to) computer time, but then one must carefully define a func-
tion evaluation. Furthermore, in order to make a fair comparison between
algorithms, it is important to consider several factors. These factors include
testing a large suite of instances of the problem, using the same initial guess,
and comparing them based on the same convergence criteria. When com-
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paring one metaheuristic to another in a spacecraft trajectory optimization
problem, it is common to perform benchmark tests using a suite of standard
problems.

Four important computational issues that arise in the numerical ap-
proaches in spacecraft trajectory optimization are (i) consistent approxima-
tions for the solution of differential equations, (ii) the scaling of optimal
control problem (iii), exploitation of sparsity in the problem, and (iv) com-
putation of derivatives of the objective and constraint functions. The manner
in which the differential equations are discretized is of great important be-
cause an inconsistent approximation to the differential equations can lead to
either non-convergence or convergence of the optimization algorithm to the
infeasible solution. Scaling and exploitation of sparsity in the problem are
issues that greatly affect both computational efficiency and convergence of
the algorithm. Finally, the manner in which derivatives are computed is also
of great importance because accurate derivatives can greatly improve both
computational efficiency and reliability.

6.2. Issues
During the last few decades, every year several papers regarding an inno-

vative concept, approach or method for spacecraft trajectory optimization is
published. The majority of the publications present truly novel ideas in this
field. However, sometimes re-iteration of existing knowledge in this subject
is introduced as a novelty. One example is the application of metaheuristics,
more specifically EAs, in spacecraft trajectory optimization. Although some
novelties are perfectly introduced in many publications, some papers are ded-
icated to the application of existing algorithms or techniques in specific space
missions. The other similar issue is the parameter tuning of algorithms, which
is called a novelty sometimes. Unfortunately, some of them do not represent
a real advance in the field.

Another suggestion for improving the quality of the literature in this field
is standardization of the whole evaluation process of the algorithms. It means
using a high number of instances for evaluation of the proposed trajectory
optimization algorithms or methods in articles. When performing empirical
experiments with methods in spacecraft trajectory optimization, the goal is
to show that a specific method performs better than other methods on a class
of space mission instances with respect to some predefined objective, which
is computational time and\or solution quality. However, an overview of the
published papers in this field confirms that experiments are performed only
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on a few instances or even on a single instance, instead of using a class of
space mission instances or randomly sampled orbits.

The next issue is the comparison of the results with other methods. The
best way to show that a new method is really successful is to demonstrate
that it outperforms state-of-the-art approaches. In some of the publications
cited in this review, it is not clear whether a state-of-the-art method has been
used for the comparisons or not. An alternative to show that the new method
is at least competitive or interesting is to demonstrate that it outperforms
some standard approaches. Unfortunately in most of the publications the
proposed method is only compared to a few other approaches. Even more
dramatic is the fact that in some papers no comparisons are performed at
all.

There are some other issues as well, which are not discussed in detail
here. For example, the experimental conditions are not completely clear in
most of the publications, sometimes best solutions are used for comparisons
instead of average solutions, and statistical tests are not performed in most
of the publications.

6.3. Suggestions for future trends
Several research lines can be identified as relevant subjects for future

works which take the field forward in promising directions. This section is
not by any means meant as a catalogue of or a roadmap for excellent research
in spacecraft trajectory optimization, its only purpose is to point out some
properties that the authors consider to be good research suggestions and
practices, and some promising areas in which a lot of research is still needed.

As the first suggestion, any research on spacecraft trajectory optimization
should be adequately framed in the general literature. Adequately framing
a method entails deconstructing it, showing which components it consists
of, and how these components were adapted to the specific space mission
that is being solved. For this to be at all possible, it is promising to explain
new spacecraft trajectory optimization approaches using the general opti-
mization terminology as introduced in this review. Clarifying the four key
items including model, objective, approach and the procedure for achieving
the solution can help the readers understand the structure of the problem.
This leads to deconstruction of the problem and reproducibility.

Following the proper terminology, all trajectory design should return to a
situation in which methods are developed based on insight into the structure
of the problem. Especially, research in spacecraft trajectory optimization
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should be applauded if it yields insight into the reasons why specific algo-
rithms, methods or techniques work well on specific space missions. For ex-
ample, the application of global optimization algorithms such as GA, PSO,
etc. to space trajectory problems often considers the problem as a black
box with limited exploitation of problem characteristics. However, in the
component-based view of spacecraft trajectory optimization, concepts from
one or a set of different frameworks can be combined into ever more pow-
erful approaches and algorithms, such as hybrid approaches and algorithms,
which are discussed previously. Such concepts can exploit problem character-
istics, providing sensible improvements over the direct application of general
purpose methods. The result of such a process is a deep insight into which
components are responsible for the core optimization power of the overall
method. Potentially, such analyses allow the spacecraft trajectory designer
to draw important conclusions on why the method works as well as it does,
by proving a relationship between the properties of the optimization method
and the structure of the space mission problem that is being solved. Self-
adaptive methods, specifically metaheuristics that automatically tune their
parameters according to the dynamic stiffness of spacecraft trajectory opti-
mization problem, also present an interesting line of future research.

Rather than spacecraft trajectory optimization, space mission design is
also a challenging issue which is totally connected with spacecraft trajectory
optimization itself. This process, better known as space mission planning,
refers to two sequential steps; design the space mission and then optimizing
the trajectory related to the mission. Many space mission planning problems
are constructed in such a way that they include both real-valued variables
and categorical variables. The categorical variables will typically specify the
sequence of events that qualitatively describe the trajectory or mission, and
the real-valued variables will represent the launch date, flight times between
planets, magnitudes and directions of rocket burns, flyby altitudes, etc., [35].
For example in multi gravity assist maneuvers, the designer must choose
both a set of discrete categorical variables defining the sequence of gravity
assists, or flybys, to be performed and a set of real-valued variables that de-
fine the trajectory corresponding to that sequence of flybys. The categorical
variables represent the planets chosen for gravity assists, and the real-valued
variables represent other parameters relevant to the trajectory, such as the
date of launch and the flight times between each planet in the sequence.
Therefore, the mission planning can thus be considered as two nested opti-
mization problems including an inner loop that optimizes the trajectory for

54



a given mission sequence, and an outer-loop scheduling problem that chooses
the optimal sequence of gravity assists. Such concepts involve using EAs in
both combinatorial and continuous domain, which is an interesting topic for
future researches, since little research is dedicated to them.

Another interesting subject is that of scalarization techniques in space-
craft trajectory optimization, which has not received much attention in the
literature. Multi-objective trajectory optimization methods utilize various
scalarization functions in different researches depending on the space mission,
approach, type and number of minor cost functions. In most scalarization
functions, preference information of the decision maker is taken into con-
sideration. After the scalarization phase, the widely developed theory and
methods of single objective optimization can be used to deal with the prob-
lem. However, no current research can be found regarding the comparison of
different scalarization techniques in spacecraft trajectory optimization, or at
least in a specific space mission.

The other new trend is designing global optimization metaheuristics which
are useful in automatically finding and selecting good trajectory options be-
tween the many often possibilities one has in the preliminary phases of mis-
sion design. Their use and efficiency are established for chemical propulsion
problems of high complexity (i.e., large launch windows and multiple fly-
bys) whenever approaches more sophisticated than the straightforward use
of standard algorithms are adopted. Preliminary results in this sense are al-
ready available and point to an increased need for computational resources.
It seems likely that future research results will aim at proving the use of these
techniques for the automated computation of low-thrust trajectories as well.

Comparing different trajectory optimization approaches has so far been
a largely unstructured affair, with testing procedures being determined on
the fly and sometimes with a specific outcome in mind. Although some
authors have developed procedures to make a statistically sound comparison,
widespread acceptance of such procedures is lacking. Perhaps a set of tools
is needed, i.e., a collection of optimized trajectories or libraries specifically
designed to determine the relative quality of a set of methods on a set of
problem instances. These should both be easy to use, and their results should
be easy to interpret. Until such tools are available and a specific comparison
protocol is enforced by journal editors and reviewers, the door is left open
for researchers to select the method of comparison that proves the point it
is intended to prove. Moreover, such contributions can be published even
if they do not contain any novel method or a method that outperforms all
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existing approaches.

7. Conclusion

A review for solving spacecraft trajectory optimization problems has been
given in this article. The solving process is decomposed into four key steps of
mathematical modeling of the problem, defining the objective functions, de-
velopment of an approach and obtaining the solution of the problem. Using
these steps, several subcategories for each step have been described. Sub-
sequently, important classifications and their characteristics have been dis-
cussed for solving spacecraft trajectory optimization problems. Finally, a
brief discussion has been given on how to decide and choose in each step.

This review is considered complementary to most of the previously pub-
lished survey articles on spacecraft trajectory optimization. It reflects most
of the research and efforts that has been carried out over the past decade
while simultaneously providing a summary of the vast amount of work that
was done up to this point. The material in this review has been presented
to give the reader an understanding of how methods, techniques and algo-
rithms are categorized for spacecraft trajectory optimization problems. It
is also worth noting that a great deal of discussion has been given to the
distinction between different categories, not just in this review but also in
previously published surveys.

To sum up, trajectory design and optimization has a broad variety of
applications in different fields, particularly in aerospace engineering. The
solution of a trajectory optimization problem that minimizes a cost function
subject to nonlinear differential equations of motion and various types of
constraints may be obtained by either an analytical approach or a numerical
approach. From the viewpoint of numerical computation, spacecraft trajec-
tory optimization is a hard global optimization problem, which is even more
difficult when the analytical expressions of the objective function or the con-
straints are not usually available. Moreover, even simple bi-dimensional cases
display an enormous number of local optima. All of the iterative techniques
and algorithms for spacecraft trajectory optimization can present conver-
gence difficulties (non-convergence, slow convergence, etc.). These difficul-
ties should be considered for each specific problem since a general technique
for all spacecraft trajectory optimization problems does not exist. It does
not make sense to ask general questions such as “Are direct methods bet-
ter than indirect methods? ”or “Is Genetic Algorithm better than Particle
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Swarm Optimization in spacecraft trajectory design?”. The answer to such
questions can only be “It depends on the space mission and the mission re-
quirements”. This is not to say that all approaches, methods and algorithms
are equally powerful, nor that it is impossible to obtain meaningful insight
into whether a specific method is more suitable for solving a specific class of
trajectory optimization problems than another. Viewing spacecraft trajec-
tory optimization concepts as sets of general ideas allows a broader view of
the literature and allows for the discovery of similarities between the struc-
ture and inner workings of methods that remain opaque if only the label the
author of the method has chosen for it is considered. This is certainly true in
the modern view of spacecraft trajectory optimization, in which ideas may
combine concepts from different frameworks and the framework that is used
to name the method is a matter of the author’s personal opinion. Choos-
ing a method for solving the spacecraft trajectory optimization problem is
based largely on the type of problem to be solved and the amount of time
that can be invested in coding. Various extensions to the currently employed
approaches offer opportunities and challenges for future works.
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